Appendix A.9.1 - Part 3

Ground Investigation Reports

Appendix A.9.1.5

Phase 3 Contract 2, N6 Galway City Transport Project Phase 3 Ground Investigation Contract 2, October 2015 to January 2016

R15-16

N6 Galway City Transport Project

Phase 3 Ground Investigation

Contract No. 2 - Factual Report

Galway County Council

Prepared by BRG Ltd. on behalf of Priority Drilling Ltd.

Dave Blaney

Project R15/16

Number:

Author(s): Dave Blaney P. Geo
BRG Ltd. Galway County Council

Date of Report: May 2016

N6 Galway City Transport Project - Phase 3 Ground Investigation Contract No. 2 - Factual Report Dave Blaney P.Geo May 2016

Contents

2. Geological Setting and Ground Conditions	6
3. Ground Investigations	8
3.1 Setting Out / Surveying	8
3.2 Ground Geophysical Surveying	8
3.3 Rotary Borehole Investigation	10
3.3.1 Low Angle Drilling (HQ Core)	10
3.3.2 Vertical Drilling (PQ Core)	11
3.4 Discontinuity Logging	13
3.5 Piezometer Installations	13
3.6 Borehole Geophysical Surveying	14
3.7 Rock / Soil / Water - Laboratory Testing	14
3.8 In Situ Water Testing	25
3.9 Permeability Testing	26
3.10 Water level Measurements	27
List of Figures	
Figure 1: Lackagh Quarry Ground Investigation Site - Yellow Polygon (Google	2015)
	3
Figure 2: Site Area - Dashed Red Line	3
Figure 3: SAC Location (Red Hashed Area) (NPWS 2015)	4
Figure 4: Simplified Geology Map of the Menlo Region (GSI 1:100.000 series)	6

Appendices

Appendix I Survey Location Data

Figure 5: Microgravity Station Locations

Figure 6: 2D Electrical Resistivity Tomography (ERT) Line / Station Locations

Figure 9: A - A' Drill Section (looking North) through the Lackagh Quarry GI Site

Figure 8: Borehole Collar Locations, Traces and Line of Section

9

9

12

R15/16 1

Appendix II Rotary Borehole Logs
Appendix III Discontinuity Logs

Appendix V Piezometer Installations
Appendix V Surface Geophysical Survey
Appendix V Perebala Complying Survey

Appendix VI Borehole Geophysical Survey
Appendix VII Laboratory Test Results

Appendix VIII In Situ Test Results
Appendix IX Falling Head Tests

Appendix X Packer Tests

Appendix XI Water Level Measurements

Appendix XII Photographs

1. Purpose and Scope of Works

Galway County Council, on its own behalf and on behalf of Galway City Council, are committed to developing a solution to the existing transportation issues in Galway City and its environs, which are having a negative impact upon the local, regional and national road network. As part of this work it is necessary to undertake ground investigation works prior to the commencement of detailed design work.

The Menlo region, within and to the immediate west of Lackagh Quarry, has been selected as a possible route for the N6 road development (Figure 1).

Figure 1: Lackagh Quarry Ground Investigation Site - Yellow Polygon (Google 2015)

The site consists of a non-active quarry with associated derelict buildings, plant, structures and poor quality agricultural land used for the grazing of cattle (Figure 2).

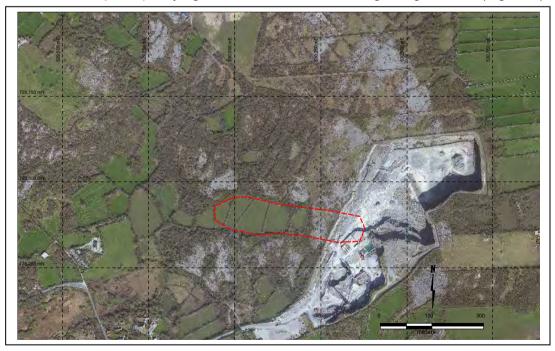


Figure 2: Site Area - Dashed Red Line

This area is in an environmentally sensitive region, with the Lough Corrib cSAC Annex 1 habitat (candidate Special Area of Conservation) located immediately west and north of the Lackagh Quarry site (Figure 3).

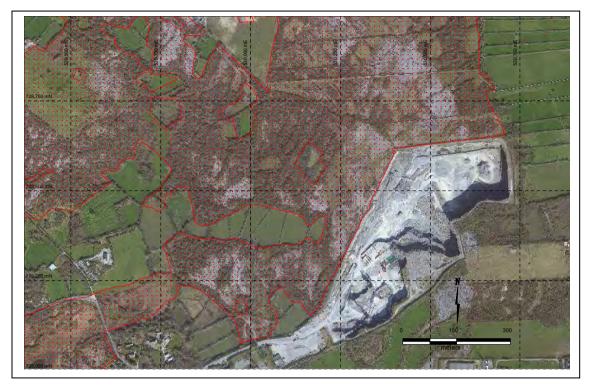


Figure 3: SAC Location (Red Hashed Area) (NPWS 2015)

The objective of the ground investigation is as follows:

- Characterise the nature of the rockmass for tunnel design;
- Characterise the hydrogeology for tunnel design and the existing groundwater conditions;
- Indentify any existing karst features and potential for karstic conditions with the rockmass
- Carryout in-situ and laboratory testing to provide geotechnical and hydrogeological parameters for tunnel design

In order to accomplish the stated objectives the following ground investigation was proposed:

- 1 No. Sub-horizontal rotary core drillhole along the proposed tunnel alignment for a length of approximately 300m
- 3 No. Vertical Rotary core drillholes to depths of 32.5m, 35.0m and 40.0m
- 3 No. Monitoring Installations (piezometers) with raised steel covers
- Geotechnical Laboratory Testing

- Downhole Geophysics
- Surface Geophysics
- Factual Reporting

2. Geological Setting and Ground Conditions

The site is underlain by Lower Carboniferous (Visean) Limestone located approximately 2km to the northeast of the contact with the Galway granitic intrusive complex (Figure 4). There is little published data for this region and Geological Survey of Ireland (GSI) 1:100,000 scale Bedrock Map series record this area as Undifferentiated Visean Shelf Limestones.

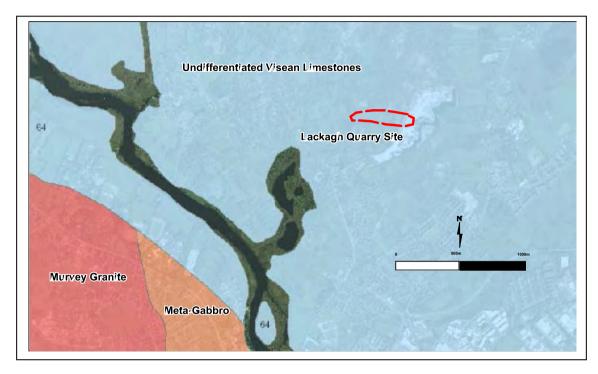


Figure 4: Simplified Geology Map of the Menlo Region (GSI 1:100,000 series)

The bedrock geology is dominated by light grey / grey, massively bedded, fine to medium grained pellety to weakly oolitic grainstones. Discrete, metric scale, beds of dark grey / black limestones are developed within the sequence. The black limestone beds are dominated by synsedimentary breccias with intraclastic clasts of grainstone supported in a black fine grained micritic matrix, this was only intersected by one of the ground investigation boreholes. There is evidence of burrowing and the brecciation may have been caused by bioturbation. Minor bioclastic debris is disseminated throughout, dominated by unrecognisable small shell fragments. Locally occurring coarse bioclastic fragments consist of thick shelled brachiopods and solitary corals. The fauna and well sorted nature of the rock are indicative of a shallow water, relatively high energy depositional environment. Thin (centimetric scale), horizons of grey / green to black mudstone form semi-continuous marker horizons within the geological sequence. The mudstone horizons (often known as clay wayboards) can be weakly tuffaceous, often containing a significant proportion of finely disseminated pyrite. The pyrite in these thin bands oxidises strongly and is responsible for the surficial iron staining present on parts of the lower benches at Lackagh Quarry.

The unconsolidated Quaternary geology of this region has been proven by the recent drilling to be much more complex than originally anticipated. A deep buried channel / trough is located to the west orientated along an east-west axis. Unconsolidated material deposited within this feature ranges from lacustrine, laminated (possibly varved) dark brown, organic clays to sands / gravels of a possibly fluviatile origin, all overlain by very stiff, glacial boulder clays.

Extensive areas of limestone pavement are developed to the north and west of the quarry site and there are numerous glacial erratics scattered throughout, many of which are granitic.

R15/16 7

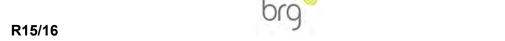
3. Ground Investigations

3.1 Setting Out / Surveying

Drawings and coordinates were provided by ARUP and were used to locate and position each borehole and geophysical station. The drillhole collar locations were positioned using a Trimble GeoExplorer 6000 RTK GPS system corrected to a differential base station through a phone modem link. Locations were measured relative to Irish Transverse Mercator.

The low angle borehole, BH01, was set out using the Trimble GeoExplorer 6000 RTK GPS system. The hole / working platform was orientated using a prismatic compass, accurate to +/- 0.5°. The rig was then set up using a Reflex TN14 Gyrocompass to measure the exact dip and azimuth of the hole before coring commenced.

Downhole surveying of drillhole BH01 was carried out at 3m intervals using a Reflex EZ-TRAC digital downhole survey instrument. Owing to ground conditions (cavities and localised broken ground from 186m) the hole could only be surveyed from 175m back to surface. A core orientation tool had been used throughout the drilling that provided information about the dip of the hole, the driller noted no significant variation in dip from 175m. Refer to Appendix I for all surveying data.


3.2 Ground Geophysical Surveying

Ground geophysical surveying was specified for the Lackagh Quarry Ground Investigation. BRG Ltd were sub-contracted by Priority Drilling Ltd. to carry out the surveying. The geophysical surveys consisted of 2D Electrical Resistivity Tomography (ERT) and Microgravity across an initial area of roughly 300x30m, this area was subsequently extended to define the lateral and depth extent of a zone of deep overburden. The surveys were designed to test for subsurface heterogeneity and bedrock depths in advance of follow up rotary core drilling. Information on potential karst features were of particular interest to the client.

Microgravity data was acquired with measured sites along the centre line and 15m either side of the proposed tunnel section. These lines were measured with nominal station spacing of 10m, with gaps where scrub hawthorn was too thick. Extra stations were measured within the quarry on the first bench at 5-10m intervals. Measurements were taken using a Lacoste & Romberg model G gravity meter. Instrument drift was monitored by returning to a locally established base station at hourly intervals.

Stations were topographically surveyed using a Trimble GeoExplorer 6000 RTK GPS system corrected through phone modem link for both the ERT and the gravity surveys. The drift corrected gravity data was corrected for elevation, latitude, and reduced to Bouguer 2.67g/cm³ to allow for local average rock densities. It was then gridded and exported for display and interpretation in the MapInfo GIS system (Figure 5).

8

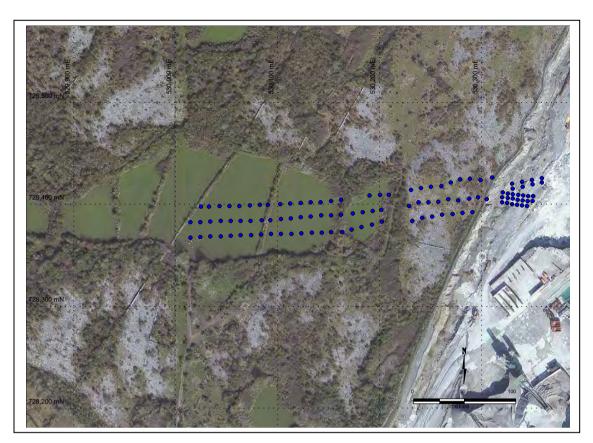


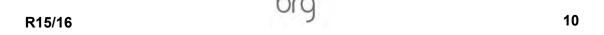
Figure 5: Microgravity Station Locations

Figure 6: 2D Electrical Resistivity Tomography (ERT) Line / Station Locations

The depth mapping potential with the ERT is limited by the length of each spread. The variability of line lengths meant that the ERT surveying was capable of surveying to a minimum depth of 22m bgl on Line 5 to a maximum depth of 60m bgl on Line 6. Equipment used was an Allied Associates Tigre system which has the potential for up to 128 electrode takeouts. 2m station spacing was initially used to get the required detail along the chosen lines, with 3m intervals on the long lines (6, 7 & 8). Data was measured using a Wenner array, controlled by an Imager2006 programme with a laptop computer. Saved data was inverted using the Geotomo Res2Dinv programme and exported as an image file displaying a cross section of the inverted Resistivities with elevation data. The resultant resistivity sections were subsequently interpreted and an interpreted geological model developed.

Resistivity sections from the 2D ERT and the microgravity data show a marked contrast from high resistivity bedrock in the east with a sharp contact into very low resistivity zones to the west. The western region has a low gravity response coincident with the low resistivity. The base of the initial ERT lines did not penetrate below 30m, however, the low resistivity zone developed to the west suggests that this area was dominated by a significant deep overburden feature. Subsequent 2D ERT surveying, particularly line 6 defined a channel / basin shaped feature developed along a roughly east - west axis with sharp contacts to the north and south. The northern side of the feature seems to be step down into the core of the channel, which is roughly coincident with BH03. The surface geophysical report is appended as Appendix V.

3.3 Rotary Borehole Investigation


Five rotary boreholes were drilled during this phase of the investigation. Four vertical and one low angle borehole drilled from the quarry floor (Figures 5 & 6).

DHID	East	North	Elevation	Dip	Azimuth	Length (m)
BH01	530370.592	728426.557	16.712	-11.5°	268.3°	276.7
BH03	530023.824	728382.566	26.256	-90°	360°	109.9
BH04	530150.783	728400.125	32.167	-90°	360°	35
BH05	530186.649	728378.105	34.138	-90°	360°	40.3
ВН06	530125.143	728383.081	30.799	-90°	360°	45

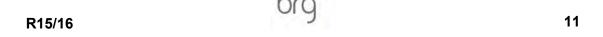
Table 1: Borehole Collar Locations

3.3.1 Low Angle Drilling (HQ Core)

The low angle borehole, BH01, was drilled using a Dura Lite rig producing HQ diameter core (63.5mm). This borehole was drilled using a 3m hexagonal core barrel in order to minimise droop and deflection away from the planned section. The borehole was collared at an azimuth of 268.3° N_{mag} and a dip of -11.5° to the horizontal. BH01 was located within the boundary of the quarry and was designed to drill into the quarry face. The hole was located at the base of the lower bench and rig

was stepped back approximately 6m from the quarry face. The face was scaled back before the rig was moved onto site using an excavator to remove loose, unstable rock material that was at risk of collapse. A concrete plinth was constructed between the borehole collar and the quarry face to support the rods whilst drilling and accordingly the first 6m cored from BH01 consists of concrete.

BH01 was drilled to a final depth of 276.7m. It was scheduled to drill to approximately 300m. However, poor quality and unconsolidated / cavernous ground intersected from 272.4m to the end of hole at 276.7m meant that the hole could not be continued.


After drilling was completed borehole BH01 was sealed at a depth of 175m using a Vann Ruth plug and was then backfilled with a cement / bentonite grout from 175m back to surface. The cavities in the lower part of the hole (175.0 - 276.7m) contributed to localised unstable ground conditions and it was considered a significant possibility that they may act as conduits to draw the cement / bentonite grout away from the hole, therefore, a plug was installed at 175m to seal the lower part of the hole.

3.3.2 Vertical Drilling (PQ Core)

The vertical boreholes (BH03, BH04, BH05 & BH06) were all drilled using a top drive Hang Seng drilling rig producing PQ diameter drill core (85mm). The holes were collared along the line of the proposed tunnel route to the west of the quarry. BH03 was scheduled to drill to a depth of 32.5m, however, it drilled through a deep overburden feature with very challenging, poorly consolidated ground, intersecting rock at a depth of 104.95m and stopping at a depth of 109.9m. The hole was cored to 85.55m in PQ and subsequently cased to 85m with PW casing. It was then open hole drilled using a HQ tricone until competent ground was intersected at 104.95m and continued to the end of hole with HQ core. Due to the instability of hole BH03 the planned piezometer could not be installed or the downhole geophysical survey carried out. It was backfilled with a cement / bentonite grout upon completion.

BH04 and BH05 were drilled to scheduled depths and intersected the expected geological succession of shallow overburden overlying competent, massively bedded limestones. Piezometers were installed in both of these holes. BH06 was an additional hole added to the ground investigation to test a zone of transition from competent to poorly consolidated rock / overburden that had been detected by the ground geophysical survey. This hole was drilled to a final depth of 45m in unconsolidated clay, sand and gravel it was backfilled with a cement grout from the end of hole back to a depth of 11.0m. A stand pipe was installed in the top of the hole.

The core from the rotary drilling was logged in accordance with the BS5930:1999 specification. A detailed geological description of the rock was generated and a

quantitative description of the fracture state of the rock core was provided for each borehole, including:

- Total Core Recovery (TCR)
- Solid Core Recovery (SCR)
- Fracture Index (FI)
- Fracture Number (FNo.)
- Rock Quality Designation (RQD)

The logs were generated using HoleBase AGS software (Hard copies - Appendix II).



Figure 7: Borehole Collar Locations, Traces and Line of Section

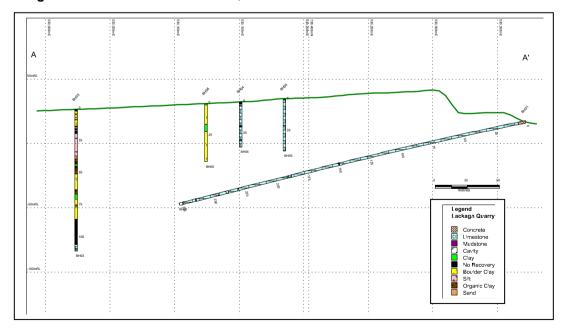


Figure 8: A - A' Drill Section (looking North) through the Lackagh Quarry GI Site

R15/16 12

3.4 Discontinuity Logging

Discontinuity logging of rock cores was carried out using the ARUP "Rock Core Discontinuity Log" template for holes BH01, BH04 and BH05. The following headings were used:

- Orientation
- Spacing
- Roughness
- Weathering
- Infilling
- Number of Discontinuity Sets

The core from BH01 was orientated using a core orientation system mounted on the core barrel. and the discontinuities were measured relative to the invert of the core (NB: downhole direction is 180° up hole is 0°).

See Appendix III for the discontinuity logs.

3.5 Piezometer Installations

Three piezometers were installed in the vertical boreholes located to the west of the quarry. They were installed in boreholes BH04, BH05 and BH06. A summary of the installation design can be seen in Tables 2 - 4.

From (m)	To (m)	Installation
0.00	28.00	Blank 19mm PVC Pipe
28.00	34.00	Slotted 19mm PVC Pipe
34.00		End Cap
0.00	21.00	Cement Grout
21.00	23.00	Bentonite Pellets
23.00	24.00	Sand
24.00	34.00	Pea Gravel
34.00	35.00	Gravel Base

Table 2: BH04 Piezometer Installation Details

From (m)	To (m)	Installation
0.00	33.00	Blank 19mm PVC Pipe
33.00	39.00	Slotted 19mm PVC Pipe
39.00		End Cap
0.00	19.00	Cement Grout
19.00	23.00	Bentonite Pellets
23.00	24.00	Sand
24.00	39.00	Pea Gravel
39.00	40.30	Gravel Base

Table 3: BH05 Piezometer Installation Details

From (m)	To (m)	Installation
0.00	4.00	Blank 19mm PVC Pipe
4.00	10.00	Slotted 19mm PVC Pipe
10.00		End Cap
0.00	1.00	Cement Grout
1.00	2.00	Bentonite Pellets
2.00	3.00	Sand
3.00	11.00	Pea Gravel
11.00	45.00	Cement Grout

Table 4: BH06 Piezometer Installation Details

3.6 Borehole Geophysical Surveying

Ground geophysical surveying was specified for the Lackagh Quarry Ground Investigation. European Geophysical Services Ltd were sub-contracted by Priority Drilling Ltd. to carry out this surveying. It was originally intended to survey three boreholes, however, the poor ground conditions encountered in BH03 meant that only BH04 and BH05 were surveyed.

The geophysical surveys consisted of:

- Optical Televiewer
- Acoustic Televiewer
- Fluid Temperature and Conductivity, Natural Gamma Calliper
- Impeller Flowmeter
- Focused Resistivity
- Full Wave Sonic Velocity
- Pumped Temperature and Conductivity

Report attached as Appendix VI

3.7 Rock / Soil / Water - Laboratory Testing

Core samples were taken from the rock / soil recovered during the drilling operations and forwarded to two accredited laboratories for a testing. The Celtest Laboratory near Bangor in North Wales was selected to carry out the rock testing. The Priority Geotechnical Soil testing Laboratory was selected to carry out the soil testing.

Test	BH01 (No.)	BH04 (No.)	BH05 (No.)	Total Number of Tests
Deformability in Uniaxial Compression	10	5	5	20
Indirect Tensile Strength by Brazilian Test	3	1	1	5
Natural Water Content	40	10	9	59
Oxidisable Sulphate	5	1	1	7
pH Value	5	1	1	7
Point Load	58	25	25	108
Porosity / Density using Saturation &				
Buoyancy	15	2	3	20
Porosity / Density using Saturation & Calliper	15	2	3	20
Thin Section Petrography	2	1	1	4
Total Sulphur	6	1	1	8
Uniaxial Compressive Strength	36	10	10	56
Total	195	59	60	314

Table 5: Scheduled Rock Tests

Test	BH03 (No.)	BH06 (No.)	Total Number of Tests
Atterberg Limits	9	3	12
Moisture Content	19	3	22
Oedometer	4	3	7
Organic Matter Content	9	3	12
Particle Size Distribution	9	0	9
pH Value	5	0	5
Triaxial Test (Unconsolidated / Undrained)	5	3	8
Total	60	15	75

Table 6: Scheduled Soil Tests

A suite of aggregate tests had been scheduled in the Bill of Quantities, including:

- Slake Durability Index
- Los Angeles Coefficient
- Aggregate Crushing Value
- Ten Percent Fines
- Aggregate Impact Value
- Aggregate Abrasion Value
- Polished Stone Value
- Aggregate Frost Heave

The volume of material required to carry out these tests was excessive (e.g. the Aggregate Frost Heave test needs a minimum of 75kg of rock) and would have taken the bulk of the available drill core. Given the relatively homogenous nature of the limestone intersected it was agreed that a representative bulk sample would be acquired from the quarry and sent for the specified aggregate testing. Accordingly, a

composite, 275kg, representative sample was obtained from the quarry and sent to Celtest.

Water samples were obtained from the piezometers in boreholes BH04, BH05 and BH06 and sent to the IAS Laboratory in Bagenalstown, Co Carlow for testing for major cations and anions.

Test results are summarised in Tables 7 - 10 certificates are attached as Appendix VII

Location	Sample	Depth	Depth		
ID	ID	Тор	Base	Test	Result
BH01	48861	6.70	6.80	Moisture Content	1.20%
BH01	48862	10.36	10.46	Point Load	79.3MPa
BH01	48863	10.46	10.69	Uniaxial Compressive Strength	97MPa
BH01	48864	10.69	10.76	Point Load	78MPa
				Porosity / Density using Saturation	
BH01	48865	10.89	10.97	and Buoyancy	0.5 / 2.63
				Porosity / Density using Saturation	
BH01	48866	10.97	11.07	and Calliper	0.47/2.69
BH01	48867	11.57	11.94	Deformability in Uniaxial Compression	99.8MPa
BH01	48868	13.26	13.35	Moisture Content	1.60%
BH01	48869	13.35	13.45	Point Load	82.9MPa
BH01	48870	13.45	13.70	Uniaxial Compressive Strength	59MPa
BH01	48871	13.70	13.80	Point Load	71.9MPa
BH01	48872	16.30	16.40	Point Load	67.7MPa
BH01	48873	16.40	16.66	Uniaxial Compressive Strength	73MPa
BH01	48874	16.66	16.80	Point Load	76.5MPa
				Porosity / Density using Saturation	
BH01	48875	22.40	22.50	and Calliper	0.58/2.65
				Porosity / Density using Saturation	
BH01	48876	22.50	22.60	and Buoyancy	1.2 / 2.70
BH01	48877	26.20	26.36	Point Load	47.1MPa
BH01	48878	26.36	26.61	Uniaxial Compressive Strength	100MPa
BH01	48879	26.61	26.70	Point Load	60.5MPa
BH01	48880	27.85	28.15	Deformability in Uniaxial Compression	112.4MPa
BH01	48881	32.65	32.72	Moisture Content	1.40%
BH01	48882	34.44	34.48	Point Load	88.8MPa
BH01	48883	34.48	34.73	Uniaxial Compressive Strength	69MPa
BH01	48884	34.73	34.83	Point Load	62.2MPa
				Porosity / Density using Saturation	
BH01	48885	44.35	44.40	and Calliper	0.54/2.70
BH01	48886	44.45	44.54	Point Load	84.8MPa
BH01	48887	44.54	44.79	Uniaxial Compressive Strength	83MPa
BH01	48888	44.79	44.90	Point Load	53.0MPa

ı		1	ĺ		I
ļ				Porosity / Density using Saturation	_
BH01	48889	45.65	45.74	and Buoyancy	0.5/2.68
BH01	48890	48.90	49.16	Deformability in Uniaxial Compression	187.5MPa
BH01	48891	53.80	53.93	Total Sulphur	<0.1%
BH01	48892	55.30	55.40	Oxidisable Sulphate	<0.01%
BH01	48893	55.84	55.92	pH Value	9.1
BH01	48894	56.50	56.60	Point Load	64.4MPa
BH01	48895	56.60	56.85	Uniaxial Compressive Strength	138MPa
BH01	48896	56.85	56.93	Point Load	63.9MPa
BH01	48897	57.30	57.40	Moisture Content	1.10%
BH01	48898	61.65	61.75	Moisture Content	1.20%
BH01	48899	62.76	62.86	Point Load	83.4MPa
BH01	48900	62.86	63.05	Uniaxial Compressive Strength	65MPa
BH01	50857	63.05	63.16	Point Load	49.6MPa
				Indirect Tensile Strength by Brazilian	
BH01	50858	64.20	64.50	Test	7.8MPa
BH01	50859	65.40	65.50	Total Sulphur	<0.1%
ļ				Porosity / Density using Saturation	
BH01	50860	65.66	65.75	and Buoyancy	0.2/2.72
				Porosity / Density using Saturation	
BH01	50861	65.75	65.92	and Calliper	0.64/2.69
BH01	50862	66.00	66.10	Point Load	69.6MPa
BH01	50863	66.10	66.34	Uniaxial Compressive Strength	104MPa
BH01	50864	66.34	66.45	Point Load	62.6MPa
BH01	50865	67.07	67.20	Moisture Content	1.10%
				Porosity / Density using Saturation	
BH01	50866	67.20	67.28	and Calliper	0.57/2.71
				Porosity / Density using Saturation	
BH01	50867	68.50	68.59	and Buoyancy	0.2/2.63
BH01	50868	70.10	70.20	Moisture Content	1.30%
BH01	50869	72.10	72.30	Deformability in Uniaxial Compression	136.3MPa
BH01	50870	73.03	73.10	Moisture Content	1.60%
BH01	50871	76.00	76.09	Moisture Content	1.20%
BH01	50872	79.10	79.18	Point Load	51.8MPa
BH01	50873	79.18	79.40	Uniaxial Compressive Strength	62MPa
BH01	50874	79.40	79.52	Point Load	48.0MPa
BH01	50875	80.04	80.12	Moisture Content	1.20%
BH01	50876	81.70	81.78	Moisture Content	1.60%
BH01	50877	87.50	87.57	Moisture Content	1.80%
BH01	50878	39.70	39.80	Moisture Content	1.30%
BH01	50879	91.10	91.20	Total Sulphur	<0.1%
				Porosity / Density using Saturation	
BH01	50880	91.34	91.42	and Calliper	0.49/2.71
				Porosity / Density using Saturation	
BH01	50881	91.42	91.51	and Buoyancy	1.0/2.70
BH01	50882	91.63	91.71	Moisture Content	1.80%
BH01	50883	92.35	92.47	Point Load	73.3MPa
BH01	50884	92.47	92.70	Uniaxial Compressive Strength	76MPa

1 1	ı	i		<u> </u>	ı
BH01	50885	92.70	92.79	Point Load	71.1
BH01	50886	93.00	93.10	Moisture Content	1.50%
BH01	50887	94.90	94.96	Oxidisable Sulphate	<0.01%
BH01	50888	94.96	95.05	pH Value	9.2
BH01	50889	97.34	97.43	Moisture Content	1.30%
BH01	50890	97.95	98.23	Deformability in Uniaxial Compression	110.0MPa
BH01	50891	101.36	101.45	Moisture Content	1.60%
				Indirect Tensile Strength by Brazilian	
BH01	50892	102.90	103.20	Test	12.6MPa
BH01	50893	108.15	108.22	Point Load	61.2MPa
BH01	50894	108.22	108.51	Uniaxial Compressive Strength	107MPa
BH01	50895	108.51	108.62	Point Load	70.2MPa
BH01	50896	108.62	108.70	Moisture Content	1.20%
				Porosity / Density using Saturation	
BH01	50897	110.27	110.37	and Calliper	0.57/2.69
21124		440.0=		Porosity / Density using Saturation	0 - 10 - 0
BH01	50898	110.37	110.45	and Buoyancy	0.7/2.59
BH01	50899	113.00	113.08	Thin Section - Petrology	
BH01	50900	113.12	113.19	Moisture Content	1.50%
BH01	50901	115.89	116.05	Point Load	52.5MPa
BH01	50902	116.05	116.29	Uniaxial Compressive Strength	104MPa
BH01	50903	116.29	116.39	Point Load	62.2MPa
BH01	50904	118.82	118.88	Moisture Content	1.90%
BH01	50905	123.44	123.55	Moisture Content	2.20%
BH01	50906	125.90	126.00	Moisture Content	1.30%
BH01	50907	126.80	126.90	Moisture Content	2.50%
BH01	50908	128.80	128.89	Point Load	80.8MPa
BH01	50909	128.89	129.14	Uniaxial Compressive Strength	79MPa
BH01	50910	129.14	129.21	Point Load	84.0MPa
BH01	50911	131.12	131.17		2.60%
BH01	50912	131.60	131.70	Moisture Content	1.20%
BH01	50913	132.65	132.62	Moisture Content	1.80%
BH01	50914	133.21	133.32	Point Load	69.2MPa
BH01	50915	133.32	133.54	Uniaxial Compressive Strength	110MPa
BH01	50916	133.54	133.63	Point Load	61.8MPa
BH01	50917	134.35	134.44	Moisture Content	1.10%
D1104	F0010	127.00	127.20	Porosity / Density using Saturation	0.76/2.01
BH01	50918	137.06	137.20	and Calliper	0.76/2.81
DU01	F0010	27.20	127 20	Porosity / Density using Saturation	0.2/2.02
BH01 BH01	50919	37.20 138.60	137.30 138.72	and Buoyancy	0.3/2.63 9.2
	50920			pH Value Deformability in Uniavial Compression	
BH01	50921	140.00	140.20	Deformability in Uniaxial Compression	58.7MPa
BH01	50922	142.81	142.91	Moisture Content	1.30%
BH01	50923	146.20	146.30	Point Load	55.0MPa
BH01	50924	146.30	146.52	Uniaxial Compressive Strength	100MPa
BH01	50925	146.52	146.61	Point Load This Section Potrology	62.6MPa
BH01	50926	148.97	149.05	Thin Section - Petrology	

i i	1	ı			1
				Porosity / Density using Saturation	
BH01	50927	150.29	150.37	and Calliper	0.61/2.75
D.104		454.67	454 75	Porosity / Density using Saturation	0 = /0 6=
BH01	50928	151.67	151.75	and Buoyancy	0.7/2.67
BH01	50929	152.97	153.04	Total Sulphur	<0.1%
BH01	50930	153.20	153.30	Oxidisable Sulphate	<0.01%
BH01	50931	154.60	154.68	Moisture Content	1.40%
BH01	50932	155.20	155.28	Moisture Content	1.70%
BH01	50933	156.33	156.44	Point Load	42.0MPa
BH01	50934	156.44	156.68	Uniaxial Compressive Strength	86MPa
BH01	50935	156.68	156.76	Point Load	47.3MPa
BH01	50936	163.49	163.56	Moisture Content	2.50%
BH01	50937	165.17	165.25	Point Load	77.7MPa
BH01	50938	165.25	165.49	Uniaxial Compressive Strength	83MPa
BH01	50939	165.49	165.58	Point Load	64.6MPa
BH01	50940	166.00	166.10	Moisture Content	1.30%
D.104	-0044	472.06	470.07	Porosity / Density using Saturation	0.40/0.60
BH01	50941	172.96	173.07	and Calliper	0.49/2.68
DUIGA	50040	472.07	472.20	Porosity / Density using Saturation	0.4/0.70
BH01	50942	173.07	173.20	and Buoyancy	0.4/2.72
BH01	50943	174.47	174.69	Uniaxial Compressive Strength	76MPa
BH01	50944	175.18	175.26	Point Load	58.6MPa
BH01	50945	175.26	175.50	Uniaxial Compressive Strength	86MPa
BH01	50946	175.50	175.59	Point Load	58.6MPa
BH01	50947	176.00	176.10	Moisture Content Indirect Tensile Strength by Brazilian	1.20%
BH01	50948	180.24	180.50	Test	14.6MPa
BH01	50949	182.12	182.20	pH Value	9.3
BH01	50950	183.17	183.40	Deformability in Uniaxial Compression	118.6MPa
BH01	50951	183.90	184.02	Point Load	48.8MPa
BH01	50952	184.02	184.25	Uniaxial Compressive Strength	97MPa
BH01	50953	184.25	184.34	Point Load	70.1MPa
BH01	50954	196.19	186.25	Moisture Content	1.80%
BH01	50955	193.60	193.68	Total Sulphur	<0.1%
22	30000		155.00	Porosity / Density using Saturation	.0.2/0
BH01	50956	194.13	194.20	and Calliper	0.54/2.69
BH01	50957	194.60	194.67	Point Load	48.0MPa
BH01	50958	194.67	194.90	Uniaxial Compressive Strength	114MPa
BH01	50959	194.90	194.99	Point Load	57.6MPa
<i>y</i> –	, , , ,	2		Porosity / Density using Saturation	- 1013
BH01	50960	195.77	195.86	and Buoyancy	0.5/2.71
BH01	50961	201.47	201.55	Oxidisable Sulphate	<0.01%
BH01	50962	204.62	204.70	Point Load	83.6MPa
BH01	50963	204.70	204.95	Uniaxial Compressive Strength	132MPa
BH01	50964	204.95	205.02	Point Load	60.5
BH01	50965	209.65	209.72	Moisture Content	1.70%
				Porosity / Density using Saturation	
i l	50966	210.18	210.30	and Calliper	0.65/2.69

Porosity / Density using Saturation and Buoyancy	0.3/2.85 111MPa 1.40% 56.2MPa
BH01 50968 210.57 210.82 Uniaxial Compressive Strength BH01 50969 211.10 211.20 Moisture Content BH01 50970 211.77 211.85 Point Load BH01 50971 211.85 212.10 Uniaxial Compressive Strength BH01 50972 212.10 212.20 Point Load BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation Porosity / Density using Saturation	111MPa 1.40% 56.2MPa
BH01 50969 211.10 211.20 Moisture Content BH01 50970 211.77 211.85 Point Load BH01 50971 211.85 212.10 Uniaxial Compressive Strength BH01 50972 212.10 212.20 Point Load BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation	1.40% 56.2MPa
BH01 50970 211.77 211.85 Point Load BH01 50971 211.85 212.10 Uniaxial Compressive Strength BH01 50972 212.10 212.20 Point Load BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation Porosity / Density using Saturation	56.2MPa
BH01 50971 211.85 212.10 Uniaxial Compressive Strength BH01 50972 212.10 212.20 Point Load BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation Porosity / Density using Saturation	
BH01 50972 212.10 212.20 Point Load BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation Porosity / Density using Saturation	
BH01 50973 212.33 212.58 Deformability in Uniaxial Compress BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content Porosity / Density using Saturation BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation	52MPa
BH01 50974 213.80 213.90 pH Value BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content Porosity / Density using Saturation and Calliper Porosity / Density using Saturation	68.7MPa
BH01 50975 218.20 218.28 Moisture Content BH01 50976 222.52 222.62 Moisture Content BH01 Porosity / Density using Saturation and Calliper Porosity / Density using Saturation	
BH01 50976 222.52 222.62 Moisture Content Porosity / Density using Saturation and Calliper Porosity / Density using Saturation Porosity / Density using Saturation	9.1
BH01 50977 223.70 223.80 Porosity / Density using Saturation and Calliper Porosity / Density using Saturation	1.50%
BH01 50977 223.70 223.80 and Calliper Porosity / Density using Saturation	1.00%
Porosity / Density using Saturation	0.56/0.75
	0.56/2.75
BH01 50978 224.08 224.20 and Buoyancy	0.2/2.62
1 DUO4 TOOTO 205 CF 205 T4 D 1 1 1	0.3/2.63
BH01 50979 225.65 225.74 Point Load	80.3MPa
BH01 50980 225.74 225.95 Uniaxial Compressive Strength	77MPa
BH01 50981 225.95 226.03 Point Load	72.3MPa
Porosity / Density using Saturation	0.0010.00
BH01 50982 228.16 228.24 and Calliper	0.64/2.70
Porosity / Density using Saturation	
BH01 50983 228.24 228.32 and Buoyancy	0.4/2.65
BH01 50984 230.13 230.20 Moisture Content	2.00%
BH01 50985 231.65 231.78 Point Load	53.0MPa
BH01 50986 231.78 232.00 Uniaxial Compressive Strength	111MPa
BH01 50987 232.00 232.10 Point Load	74.6MPa
BH01 50988 232.46 232.60 Deformability in Uniaxial Compress	
BH01 50989 235.04 235.10 Moisture Content	1.30%
BH01 50990 235.64 235.73 Total Sulphur	<0.1%
BH01 50991 236.73 237.03 Uniaxial Compressive Strength	80MPa
BH01 50992 237.17 237.43 Uniaxial Compressive Strength	76MPa
BH01 50993 242.82 242.92 Point Load	53.8MPa
BH01 50994 242.92 243.14 Uniaxial Compressive Strength	118MPa
BH01 50995 243.14 243.23 Point Load	64.6MPa
BH01 50996 250.30 250.56 Deformability in Uniaxial Compress	ion 56.4MPa
BH01 50997 251.81 251.95 Point Load	52.5MPa
BH01 50998 251.95 252.22 Uniaxial Compressive Strength	121MPa
BH01 50999 252.22 252.32 Point Load	61.4MPa
BH01 51000 253.30 253.38 Oxidisable Sulphate	<0.01%
BH01 51001 259.72 259.82 Point Load	64.1MPa
BH01 51002 259.82 260.06 Uniaxial Compressive Strength	143MPa
BH01 51003 260.06 260.18 Point Load	44.9MPa
BH01 51004 262.43 262.63 Uniaxial Compressive Strength	66MPa
BH01 51005 262.63 262.73 Point Load	67.7MPa
BH01 51006 264.80 164.93 Point Load	48.5MPa
BH01 51007 264.93 264.15 Uniaxial Compressive Strength	83MPa
Porosity / Density using Saturation	
BH01 51008 265.15 265.25 and Calliper	0.63/2.65

				Porosity / Density using Saturation	
BH01	51009	265.25	265.38	and Buoyancy	0.5/2.64
BH01	51010	268.30	268.40	Uniaxial Compressive Strength	90MPa
BH01	51011	271.70	271.90	Uniaxial Compressive Strength	91MPa

 Table 7: Summary of Rock Test Results in BH01.

Location						
ID	Sample ID	Depth Top	Depth Base	Test	Certificate	
BH03	48801	4.15	4.42	Triaxial - Unconsolidated / Undrained	х	
BH03	48802	13.65	13.73	Moisture Content	х	
BH03	48803	13.73	13.85	Atterberg Limits	х	
BH03	48804	14.90	15.00	Particle Size Distribution	х	
BH03	48805	19.00	19.10	Particle Size Distribution	х	
BH03	48806	19.10	19.20	Atterberg Limits	х	
BH03	48807	19.25	19.30	Moisture Content	х	
BH03	48808	19.90	20.00	Moisture Content	х	
BH03	48809	20.95	21.05	рН	х	
BH03	48810	21.30	21.40	Moisture Content	х	
BH03	48811	25.50	25.60	Particle Size Distribution	х	
BH03	48812	25.80	25.90	Particle Size Distribution	х	
BH03	48813	26.50	26.60	Particle Size Distribution	х	
BH03	48814	26.70	26.80	Particle Size Distribution	х	
BH03	48815	27.20	27.25	рН	х	
BH03	48816	27.45	27.55	Atterberg Limits	х	
BH03	48817	27.55	27.65	Particle Size Distribution	х	
BH03	48818	30.25	30.33	Particle Size Distribution	х	
BH03	48819	31.20	31.30	Moisture Content	х	
BH03	48822	33.95	34.03	Moisture Content	х	
BH03	48824	36.70	36.80	Particle Size Distribution	х	
BH03	48825	38.60	38.70	Moisture Content	х	
BH03	48826	38.95	39.05	Organic Matter Content	х	
BH03	48827	39.25	39.30	Atterberg Limits	х	
BH03	48828	39.45	39.55	Organic Matter Content	х	
BH03	48829	39.80	39.83	Moisture Content	х	
BH03	48830	40.65	40.77	Atterberg Limits	х	
BH03	48831	41.20	41.25	рН	х	
BH03	48832	41.30	41.50	Oedometer	х	
BH03	48833	41.85	42.08	Triaxial - Unconsolidated / Undrained	х	
BH03	48834	42.30	42.35	Moisture Content	х	
BH03	48835	42.35	42.40	Organic Matter Content	Х	
BH03	48836	42.65	42.97	Triaxial - Unconsolidated / Undrained	х	
BH03	48837	42.97	43.30	Oedometer	х	
BH03	48838	44.05	44.20	Oedometer	Х	
BH03	48839	46.20	46.27	Organic Matter Content	Х	
BH03	48840	46.27	46.59	Triaxial - Unconsolidated / Undrained	Х	
BH03	48841	47.00	47.10	рН	х	

R15/16 21

BH06	50856	21.75	21.80	Organic Matter Content	Х
BH06	50855	21.52	21.60	Atterberg Limits	Х
BH06	50854	21.45	21.52	Moisture Content	Х
BH06	50853	20.00	20.25	Oedometer	Х
BH06	50852	19.70	19.95	Oedometer	Х
BH06	50851	18.95	19.05	Organic Matter Content	Х
BH06	50750	18.65	18.75	Atterberg Limits	х
BH06	50749	18.25	18.35	Moisture Content	х
BH06	50748	18.00	18.25	Triaxial - Unconsolidated / Undrained	Х
BH06	50747	17.13	17.20	Organic Matter Content	Х
BH06	50746	16.70	16.80	Atterberg Limits	Х
BH06	50745	16.60	16.70	Moisture Content	Х
BH06	50744	16.20	16.50	Oedometer	Х
BH06	50742	5.25	5.50	Triaxial - Unconsolidated / Undrained	X
BH03	48860	71.60	71.70	Moisture Content	X
BH03	48859	70.75	70.85	Moisture Content	X
BH03	48858	70.40	70.50	Moisture Content	X
BH03	48857	68.40	68.45	Moisture Content	X
BH03	48856	66.95	67.05	Moisture Content	X
BH03	48855	65.50	65.60	Moisture Content	X
BH03	48854	64.90	64.95	Organic Matter Content	X
BH03	48853	64.30	64.35	Moisture Content	X
BH03	48852	63.90	63.95	Organic Matter Content	X
BH03	48851	63.50	63.55	Moisture Content	X
BH03	48849	63.38	63.43	pH	X
ВН03	48849	63.15	63.22	Organic Matter Content	X X
вноз	48847 48848	49.00 49.30	49.10 49.40	Organic Matter Content Moisture Content	X
BH03 BH03	48846	48.45	48.70	Triaxial - Unconsolidated / Undrained	X
BH03	48845	48.20	48.30	Atterberg Limits	X
BH03	48844	47.85	48.02	Oedometer Attachara Limits	X
BH03	48843	47.45	47.55	Organic Matter Content	X
BH03	48842	47.20	47.27	Moisture Content	Х

Table 8: Summary of Soil Test Results in BH03 & BH06.

Location	Sample	Depth	Depth		
ID	ID	Тор	Base	Test	Result
BH04	48901	3.5	3.55	Moisture Content	0.20%
BH04	48902	5.4	5.48	Moisture Content	0.60%
BH04	48903	8.06	8.36	Deformability in Uniaxial Compression	119.9MPa
BH04	48904	9.3	9.36	Moisture Content	0.30%
BH04	48905	10.63	10.88	Deformability in Uniaxial Compression	41.6MPa
BH04	48906	11.77	11.83	Moisture Content	0.20%
BH04	48907	12.62	12.75	Point Load	59.2MPa
BH04	48908	12.85	13.1	Uniaxial Compressive Strength	76MPa
BH04	48909	13.1	13.25	Point Load	52.7MPa

BH04	48910	14.4	14.63	Deformability in Uniaxial Compression	62.0MPa
BH04	48911	14.63	14.74	Point Load	49.2MPa
BH04	48912	14.74	14.97	Uniaxial Compressive Strength	86MPa
BH04	48913	14.97	15.13	Point Load	60.1MPa
				Porosity / Density using Saturation and	
				Calliper & Porosity / Density using	
BH04	48914	11.77	11.83	Saturation and Buoyancy	0.2/2.72
BH04	48915	17.74	17.86	Point Load	60.2MPa
BH04	48917	18.12	18.2	Point Load	56.5MPa
BH04	48918	19.2	19.32	Point Load	36.5MPa
BH04	48919	20.05	20.12	Thin Section / Petrography	
BH04	48920	20.12	20.22	Point Load	73.9MPa
BH04	48921	20.22	20.5	Uniaxial Compressive Strength	55MPa
BH04	48922	20.8	20.85	Moisture Content	0.40%
BH04	48923	21.2	21.3	Point Load	68.4MPa
BH04	48924	21.8	21.9	Moisture Content	1%
BH04	48925	22.2	22.31	Point Load	90.2MPa
BH04	48926	22.6	22.78	Point Load	60.1MPa
BH04	48927	22.78	23.06	Uniaxial Compressive Strength	53MPa
BH04	48928	23.1	23.2	Point Load	64.6MPa
				Porosity / Density using Saturation and	
				Calliper & Porosity / Density using	_
BH04	48929	21.8	21.9	Saturation and Buoyancy	0.4/2.69
BH04	48930	23.7	23.8	Point Load	77.7MPa
BH04	48931	23.8	24.1	Uniaxial Compressive Strength	111MPa
BH04	48932	24.17	24.28	Point Load	74MPa
BH04	48933	24.28	24.52	Uniaxial Compressive Strength	91MPa
BH04	48934	25.08	25.19	Point Load	77.5MPa
BH04	48935	25.19	25.41	Deformability in Uniaxial Compression	64.1MPa
BH04	48936	28.27	28.4	Porosity / Density using Saturation and	0 5 /2 65
	+			Calliper Point Load	0.5/2.65
BH04	48937	27.91	28		89.4MPa
BH04	48938	28.27	28.4	Moisture Content Point Load	0.10%
BH04	48939	28.4	28.44	Indirect Tensile Strength by Brazilian	68.3MPa
BH04	48941	29.38	29.54	Test	5.97MPa
BH04	48943	29.86	29.94	Point Load	92MPa
BH04	48949	30.93	30.03	Point Load	76.6MPa
BH04	48950	31.03	31.3	Uniaxial Compressive Strength	76MPa
BH04	48951	31.3	31.4	Point Load	67.8MPa
BH04	48954	31.66	31.7	Total Sulphur	<0.1%
BH04	48955	31.76	31.84	Point Load	59.6MPa
BH04	48956	31.84	31.93	Oxidisable Sulphur	0.04
BH04	48957	31.93	32.15	Uniaxial Compressive Strength	78MPa
BH04	48958	32.15	32.26	Point Load	55.4MPa
BH04	48959	32.15	32.35	pH	9.3
BH04	48962	32.20	32.57	Point Load	78.8MPa
BH04	48963	32.57	32.85	Uniaxial Compressive Strength	92MPa
BH04	48964	32.85	32.83	Point Load	65.5MPa
טווט4	40304	32.03	32.30	1 Onit Load	UJ.JIVIPd

BH04	48965	33.12	33.16	Moisture Content	0.10%
BH04	48966	33.2	33.48	Deformability in Uniaxial Compression	66.5MPa
BH04	48967	33.48	33.6	Point Load	49.9MPa
				Porosity / Density using Saturation and	
BH04	48968	32.35	32.43	Buoyancy	0.4/2.69
BH04	48969	34.56	34.59	Moisture Content	0.30%
BH04	48970	34.96	35	Moisture Content	0.20%
BH05	48971	0.65	0.73	Moisture Content	0.30%
BH05	48972	0.98	1.04	Moisture Content	0.10%
BH05	48973	1.41	1.5	Moisture Content	0.10%
				Porosity / Density using Saturation and	
BH05	48974	2.62	2.67	Calliper	0.4/2.68
BH05	48975	2.8	2.96	Point Load	27.8Mpa
				Porosity / Density using Saturation and	
BH05	48976	1.41	1.5	Buoyancy	0.3/2.65
BH05	48977	7.73	7.84	Point Load	63MPa
BH05	48978	8.1	8.25	Point Load	43.8MPa
BH05	48979	8.54	8.66	Point Load	62MPa
BH05	48980	8.9	8.96	Moisture Content	0.10%
BH05	48981	9.46	9.57	Point Load	91.5MPa
BH05	48982	9.57	9.77	Uniaxial Compressive Strength	91MPa
BH05	48983	9.77	9.92	Point Load	55.4MPa
BH05	48984	10.2	10.26	Point Load	101.0MPa
BH05	48985	11.3	11.45	Point Load	43.1MPa
BH05	48986	11.45	11.72	Uniaxial Compressive Strength	86MPa
BH05	48987	11.72	11.83	Point Load	77.2MPa
BH05	48988	12.92	13.07	Moisture Content	0.30%
BH05	48989	13.5	13.6	Point Load	141.1MPa
BH05	48990	13.7	13.81	Point Load	67.3MPa
BH05	48991	13.81	14.07	Uniaxial Compressive Strength	94MPa
BH05	48992	14.07	14.15	Point Load	84.4MPa
BH05	48993	14.27	14.4	Point Load	74.0MPa
BH05	48994	14.65	14.89	Uniaxial Compressive Strength	72MPa
BH05	48995	15.43	15.55	Point Load	81.8MPa
BH05	48996	15.95	16.22	Deformability in Uniaxial Compression	57.0MPa
BH05	48997	16.45	16.55	Point Load	67.3MPa
BH05	48998	16.87	17.19	Uniaxial Compressive Strength	77MPa
				Porosity / Density using Saturation and	
BH05	48999	17.97	18.06	Buoyancy	0.3/2.69
B.1.6=		46 -		Indirect Tensile Strength by Brazilian	
BH05	50701	19.7	19.92	Test	3.39MPa
BHUE	50703	20 OE	20 NE	Porosity / Density using Saturation and	0.4/2.60
BH05	50702	28.85	28.95	Calliper Point Load	0.4/2.69
BH05	50703	22.07	22.21	Point Load	54.3MPa
BH05	50704	22.9	23	Point Load	87.3MPa
BH05	50705	23.94	24.05	Point Load	67.2MPa
BH05	50706	24.05	24.3	Deformability in Uniaxial Compression	44.9MPa
BH05	50707	24.73	24.85	Point Load	66.4MPa
BH05	50708	25.2	25.4	Deformability in Uniaxial Compression	22.6MPa

BH05	50709	26	26.12	Point Load	76.4MPa
BH05	50710	26.12	26.35	Deformability in Uniaxial Compression	66.3MPa
BH05	50711	27.68	27.88	Uniaxial Compressive Strength	79MPa
BH05	50712	28.75	28.85	Moisture Content	0.10%
BH05	50715	29.09	29.18	Total Sulphur	<0.1
BH05	50716	29.18	29.3	Oxidisable Sulphur	<0.01
BH05	50717	29.3	29.4	рН	9.2
BH05	50718	30.3	30.4	Moisture Content	0.40%
BH05	50721	30.88	30.92	Moisture Content	0.30%
BH05	50725	32.44	32.54	Point Load	76.8MPa
BH05	50726	32.54	32.6	Moisture Content	0.20%
BH05	50727	32.83	32.92	Point Load	66.7MPa
BH05	50728	32.92	33	Thin Section / Petrography	
BH05	50729	33	33.26	Uniaxial Compressive Strength	116MPa
				Porosity / Density using Saturation and	
BH05	50730	33.22	33.26	Calliper	0.6/2.69
BH05	50731	33.5	33.7	Uniaxial Compressive Strength	51MPa
BH05	50733	33.92	33.16	Uniaxial Compressive Strength	54MPa
				Porosity / Density using Saturation and	
BH05	50735	34.5	34.7	Buoyancy	0.4/2.68
BH05	50736	37.4	37.5	Point Load	80.7MPa
BH05	50737	37.5	37.82	Uniaxial Compressive Strength	131MPa
BH05	50738	37.82	37.92	Point Load	77.2MPa
BH05	50740	37.92	38.08	Point Load	52.3MPa

Table 9: Summary of Rock Test Results in BH04 & BH05

Sample	Test	Result
Bulk Sample	Aggregate Crushing Value	23%
Bulk Sample	Aggregate Impact Value	17%
Bulk Sample	Aggregate Abrasion Value	12
Bulk Sample	Polished Stone Value	38
Bulk Sample	Slake Durability	99.40%
Bulk Sample	Los Angeles Coefficient	28
Bulk Sample	Soundness by Magnesium Sulphate	1
Bulk Sample	10% Fines	150kN
Bulk Sample	Frost Heave	3.3mm

Table 10: Summary of Rock Test Results in Bulk Sample

3.8 In Situ Water Testing

Water samples were obtained from boreholes BH04, BH05 and BH06 and tested for pH, Temperature, Conductivity and Dissolved O_2 . Three water samples were obtained and the pH, Temperature, Conductivity and dissolved O_2 data was acquired using a Watterra Pump with each borehole purged for at least 30 minutes. This work was carried out by Ronan Doyle of Ronan Doyle Monitoring Solutions, Ballinrobe County Mayo.

Borehole	рН	Temperature (°C)	Conductivity (µS)	Dissolved O ₂ (mg/l)		
BH04	7.47	10.5	295	0.21		
BH05	7.77	10.5	420	0.8		
BH06	12.53	9.8	6187	0.8		

Table 11: In Situ Water Testing Results

3.9 Permeability Testing

Falling Head and Packer Testing was carried out on boreholes BH04 and BH05. The ground conditions intersected in boreholes BH03 and BH06 was considered too unstable for permeability testing.

A falling head test was carried out in BH04 on the 5th of January 2016. The rods were removed from the hole and the water level in the borehole was recorded at 17.88m bgl before the test commenced. Initially a volume of 130 litres was pumped into the hole, upon cessation of pumping the water level recovered almost immediately (i.e. faster than the dip meter could be lowered into the hole). A second test was subsequently carried out and 500 litres were pumped into the hole and same rapid recovery to 17.88m bgl was observed.

Falling head tests were carried out in BH05 on the 7th of January 2016. The rods were removed from the hole and the water level in this borehole was recorded at 19.45m bgl before commencement of the test. Initially a volume of 215 litres was pumped into the hole and the hole recovered back to 19.42m bgl and had stabilised after 40 minutes. A second test using a greater volume of water was carried out and 1000 litres of water was pumped into the hole. This test had proceeded almost to conclusion when the water level rose slightly (c.1.0cm) and a obstruction could be felt in the hole. The driller ran the rods back into the hole to assist with the piezometer installation and found that there was clay in the hole from 19.3 to 20.8m. The Falling Head test data is presented in Appendix XI.

Packer testing was carried out in boreholes BH04 and BH05 on the 18th of December 2015 and the 6th of January 2016 respectively. Set up details are presented in Table 12 and the results in Appendix X.

Borehole	Top (m)	Bottom (m)	Midpoint (m)
BH04	18	20	19
BH04	21	23	22
BH04	24	26	25
BH04	28	30	29
BH05	36	38	37
BH05	30	32	31
BH05	24	27	25.5
BH05	20	23	21.5

Table 12: Packer Test Installation Details

The Packer Tests carried out at 28-30m and 21-23m in BH04 suffered from loss of water pressure due to cavities / fractures. For both of these tests only one stage could be measured. All of the scheduled packer tests were carried out in BH05.

It was noted that the water pressure recovery once pumping had ceased was instantaneous in all of the test intervals.

3.10 Water level Measurements

Throughout the ground investigation water level measurements were taken from all of the vertical drillholes, both during and after drilling. It should be noted that owing to ground instability and the need to keep holes open for the ground geophysical surveying, the bulk of the readings from boreholes BH03 and BH04 were taken when the holes were cased with PW steel casing, which extended from surface to the base of the hole.

APPENDIX I

Hole	East	North	Elevation
BH1	530370.592	728426.557	16.712
вн3	530023.824	728382.566	26.256
BH4	530150.783	728400.125	32.167
BH5	530186.649	728378.105	34.138
вн6	530125.143	728383.081	30.799

Survey	Station	East	North	Elevation	Dip	Azimuth	Tool-	Gravity	Mag.Str.	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
name *	Metres	Metres	Metres	Metres	Degrees	Degrees	Centigrade	Gravity	nT	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
BH-1	1	0	0	0	-11.5	268.3	11	1.000147	48955	67.9	18396	0	45367	90	292.4	0
BH-1	4	-2.94	-0.09	-0.6	-11.5	268.1	11	1.00047	48954	67.9	18424	0	45355	90	292.4	1.9
BH-1	7	-5.88	-0.18	-1.2	-11.5	268.4	11	1.000677	48946	67.9	18415	0	45350	89.7	292.1	2.3
BH-1	10	-8.81	-0.28	-1.8	-11.7	267.9	11	1.00063	49023	67.9	18436	0	45424	89	291.5	5.4
BH-1	13	-11.75	-0.39	-2.41	-11.7	267.9	11	1.001172	49022	67.9	18468	0	45410	88.4	290.9	0.4
BH-1	16	-14.68	-0.5	-3.02	-11.8	267.6	11	1.000628	49027	67.9	18422	0	45434	88.4	290.8	3
BH-1	19	-17.62	-0.62	-3.63	-11.9	267.5	11	1.00041	49014	67.9	18451	0	45408	88.2	290.7	0.9
BH-1	22	-20.54	-0.81	-4.27	-12.6	265.4	11	1.002129	49028	68.5	17966	0	45618	89.2	291	22.5
BH-1	25	-23.47	-0.99	-4.91	-12.1	267.2	11	1.000351	49037	67.9	18457	0	45431	88.7	291.1	19
BH-1	28	-26.4	-1.13	-5.54	-12.2	267.3	11	1.000495	49044	67.9	18458	0	45438	88.4	290.8	1.2
BH-1	31	-29.33	-1.28	-6.18	-12.4	267.1	11	1.000687	49069	67.9	18452	0	45467	88.5	290.9	3.2
BH-1	34	-32.25	-1.43	-6.83	-12.6	266.9	11	1.000132	49044	67.9	18419	0	45454	88.4	290.8	2.8
BH-1	37	-35.18	-1.58	-7.48	-12.6	267.1	11	1.000742	49065	67.9	18458	0	45460	88.3	290.7	2.2
BH-1	40	-38.1	-1.73	-8.13	-12.6	267.1	11	1.000358	49075	67.9	18479	0	45463	88.3	290.8	0.4
BH-1	43	-41.02	-1.88	-8.79	-12.6	267.1	11	1.000171	49057	67.9	18429	0	45464	88.5	290.9	0.6
BH-1	46	-43.95	-2.02	-9.44	-12.5	267.3	11	1.000035	49054	67.9	18466	0	45446	88.8	291.3	2
BH-1	49	-46.87	-2.17	-10.09	-12.7	267	11	1.000317	49034	67.9	18438	0	45435	89.4	291.8	2.7
BH-1	52	-49.8	-2.32	-10.75	-12.7	267.1	11	1.000291	49062	68	18415	0	45475	89.7	292.1	0.4
BH-1	55	-52.72	-2.47	-11.41	-12.7	266.9	11	1.000127	49043	67.9	18450	0	45440	90.4	292.9	2
BH-1	58	-55.64	-2.61	-12.06	-12.5	267.8	11	0.99969	49044	67.6	18658	0	45356	90.8	293.6	9.5
BH-1	61	-58.57	-2.74	-12.72	-12.8	267.1	11	1.000477	49098	67.9	18474	0	45490	92.3	294.8	8
BH-1	64	-61.49	-2.89	-13.38	-12.8	267	11	1.00001	49037	67.9	18460	0	45430	93.1	295.6	0.4
BH-1	67	-64.41	-3.04	-14.05	-12.9	266.9	11	1.000212	49044	67.9	18458	0	45438	93.5	296	1.5
BH-1	70	-67.33	-3.2	-14.72	-12.9	267	11	1.0002	49029	67.9	18458	0	45422	94.5	297	1.4
BH-1	73	-70.25	-3.35	-15.39	-12.9	266.9	11	1.000355	49071	67.9	18437	0	45476	94.9	297.4	1.7
BH-1	76	-73.17	-3.51	-16.06	-12.9	267	11	1.000287	49068	67.8	18512	0	45442	95.4	297.9	1.8
BH-1	79	-76.11	-3.53	-16.68	-10.9	272	11	0.992033	49037	67.9	18432	0	45441	95.8	298.3	52.4

Survey	Station	East	North	Elevation	Dip	Azimuth	Tool-	Gravity	Mag Ctu	Mag Din	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
name *	Metres	Metres	Metres	Metres	Degrees	Degrees	Centigrade	Gravity	Mag.Str.	Mag.Dip Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
BH-1	82	-79.04	-3.56	-17.3	-13	266.9	11	1.000459	49018	67.9	18469	0	45406	96.3	298.8	53.7
BH-1	85	-81.96	-3.72	-17.98	-13.2	266.6	11	1.000487	49052	67.9	18490	0	45434	96.5	299.1	3.2
BH-1	88	-84.87	-3.89	-18.66	-13.1	266.8	11	1.000296	49038	67.9	18437	0	45440	96.8	299.2	1.2
BH-1	91	-87.79	-4.06	-19.34	-13.1	266.8	11	1.000282	49031	67.9	18455	0	45426	96.8	299.3	0.7
BH-1	94	-90.71	-4.22	-20.03	-13.1	266.7	11	1.000122	49080	67.9	18447	0	45482	97.2	299.7	1
BH-1	97	-93.62	-4.39	-20.71	-13.2	266.7	11	1.000303	49066	67.9	18470	0	45457	97.6	300.1	0.6
BH-1	100	-96.54	-4.55	-21.4	-13.2	266.7	11	1.000268	49068	67.8	18503	0	45445	97.5	300.1	0.5
BH-1	103	-99.47	-4.63	-22.05	-11.8	270.2	11	0.995246	49056	68.6	17887	0	45678	98.2	300	37
BH-1	106	102.39	-4.71	-22.7	-13.3	266.7	11	1.00031	49060	67.9	18480	0	45446	97.7	300.2	37.4
BH-1	109	105.31	-4.88	-23.39	-13.3	266.6	11	1.000017	49021	67.9	18429	0	45425	97.8	300.3	0.7
BH-1	112	- 108.22	-5.05	-24.08	-13.4	266.5	11	1.000223	49056	67.9	18482	0	45442	98	300.5	1.5
BH-1	115	111.13	-5.22	-24.78	-13.4	266.7	11	1.000889	49063	67.9	18460	0	45457	98	300.5	1.4
BH-1	118	114.05	-5.4	-25.48	-13.5	266.5	11	1.000317	49027	67.9	18468	0	45416	98.3	300.8	2.1
BH-1	121	116.96	-5.58	-26.18	-13.4	266.6	11	1.000141	49042	67.9	18448	0	45440	98.3	300.8	1.2
BH-1	124	- 119.87	-5.75	-26.88	-13.5	266.5	11	1.000272	49046	67.9	18477	0	45433	98.3	300.9	0.9
BH-1	127	122.78	-5.93	-27.58	-13.5	266.5	11	0.99995	49034	67.9	18473	0	45422	98.3	300.8	0.6
BH-1	130	- 125.69	-6.11	-28.28	-13.6	266.4	11	1.000699	49079	67.9	18430	0	45487	98.2	300.7	0.8
BH-1	133	-128.6	-6.29	-28.99	-13.6	266.6	11	1.00039	49055	67.9	18443	0	45456	98.2	300.8	1.6
BH-1	136	131.51	-6.47	-29.7	-13.7	266.3	11	0.999701	49064	67.9	18444	0	45466	98	300.5	2.8
BH-1	139	134.42	-6.65	-30.41	-13.7	266.4	11	1.000129	49052	67.9	18462	0	45445	98.2	300.7	0.9
BH-1	142	137.33	-6.83	-31.12	-13.8	266.4	11	1.000614	49054	67.9	18477	0	45441	98.7	301.3	0.9
BH-1	145	140.24	-7.02	-31.83	-13.8	266.3	11	1.000523	49075	67.9	18474	0	45465	98.7	301.2	0.7
BH-1	148	143.14	-7.21	-32.55	-13.8	266.3	11	1.000394	49034	67.9	18471	0	45422	98.9	301.5	0.6

Survey name	Station	East	North	Elevation	Dip	Azimuth	Tool-	Gravity	Mag.Str.	Mag.Dip	Mag.X	Mag.Y	Mag.Z	Roll Angle	Mag.T/face	DLS
*	Metres	Metres	Metres	Metres	Degrees	Degrees	Centigrade	G	nT	Degrees	nT	nT	nT	Degrees	Degrees	deg./30m
BH-1	151	- 146.05	-7.39	-33.26	-13.8	266.4	11	1.000164	49043	67.9	18474	0	45430	98.9	301.5	1.5
BH-1	154	148.96	-7.57	-33.98	-13.9	266.4	11	1.000365	49066	67.9	18451	0	45464	99.1	301.6	1
BH-1	157	151.87	-7.76	-34.7	-13.9	266.3		1.000252	49055			0		99.2	301.8	1
RH-1	157	151.87	-7.76	-34.7	-13.9	200.3	11	1.000252	49055	67.8	18506	U	45430	99.2	301.8	1
BH-1	160	154.77	-7.95	-35.43	-14	266.2	11	0.999691	49068	67.9	18477	0	45456	99.2	301.7	0.6
BH-1	163	- 157.68	-8.14	-36.15	-14	266.3	11	1.001008	49040	67.9	18411	0	45453	99.3	301.8	0.5
BH-1	166	- 160.58	-8.33	-36.88	-14	266.2	11	0.999912	49061	67.9	18462	0	45455	100.3	302.8	0.6
BH-1	169	163.48	-8.52	-37.6	-14	266.3	11	1.00026	49044	67.9	18480	0	45430	100.3	302.9	1.2
BH-1	172	166.39	-8.71	-38.33	-14.1	266.4	11	1.000443	49080	67.9	18462	0	45476	100.3	302.8	0.4
DII-T	1/2	-	-3.71	-36.33	-14.1	200.4	11	1.000443	43000	07.9	10402	0	45470	100.3	302.8	0.4
BH-1	175	169.29	-8.89	-39.06	-14.1	266.2	11	0.999983	49089	67.9	18458	0	45487	100.3	302.8	1.5

APPENDIX II

											Borehole N	lo.
Ke	ynetik						R	ota	ry (Core Log	BH01	
						D.,					Sheet 1 of 2	
Projec	ct Name	Lackagh (Ground In	ูใuarry vestiga	Prelim ation	inary		oject No. ickagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC	е
Locati	ion [.]	Galway							Level:	16.71	Scale	
Loodi		Calway							ECVOI.	10.71	1:50), ₍
Client	:	Galway Co	ounty (Counci	l				Dates:	13/11/2015 - 21/12/2015	Logged B Dave Blan	
Well	Water	Depth	Туре		Coring	9	Depth	Level	Legend	Stratum Description		
vveii	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Concrete Plinth		
												-
												1 -
												2 -
		0.00 - 5.60										
		0.00 - 3.00										3 -
												4 -
												5 -
		5.60 - 6.30	14	100	60	41	5.60	11.11		Strong. fresh, pale grey, fine to med massive LIMESTONE. (Core invert	ium grained, not marked)	6 -
							6.30	10.41		Strong. fresh, pale grey, fine to med massive LIMESTONE. Sub-vertical occasional coarse shelled bioclast (stylolites.	
		6.30 - 7.52	3	100	100	100	7.50	0.40				7
							7.52	9.19		Strong. fresh, pale grey, fine to med massive LIMESTONE. Occasional fi scattered bioclasts, minor stylolites	ium grained, ine grained	8 -
		7.52 - 10.15	6	100	89	81						9 -
Rema										Continued on next sheet		10 -

Well Well Well Well Strikes Depth TCR SCR RQD Depth Level Strikes Strictum Description Depth Strikes Depth TCR SCR RQD Depth Level Strikes Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Very occasional fine grained blockst Depth D												Borehole N	lo.
Project Name: Lackagh Country Preliminary Ground Investigation Galway Level: 16.71	Ké	wneti						R	ota	ry C	Core Log	BH01	
Condition Cond													
Dept Continue Co	Projec	t Name	Lackagh C Ground In	Quarry vestiga	Prelim ation	inary		-	arry	Co-ords:	530370.59 - 728426.56		e
Dates	Locati	on:	Galway							Level:	16.71		
Water Depth Tork School Tork School Stratum Description Tork School Tork School Stratum Description Tork Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, pellety / slightly oolitic texture Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, pellety / slightly oolitic texture Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, pellety / slightly oolitic intervals with small rounded bioclasts Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, intersecting conjugate Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, intersecting conjugate Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, white coloite fill along joint Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, white coloite fill and weak oxidation along steeply diplong joint surface Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, white coloite fill and weak oxidation along steeply diplong joint surface Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, white coloite fill and weak oxidation along steeply diplong joint surface Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, white coloite fill and weak oxidation along steeply diplong joint surface Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE, shipping joint grained, massive LIMESTONE, shipping j	Client		Galway Co	ounty (Council	l				Dates:	13/11/2015 - 21/12/2015	Logged B	-
Strikes	\A/-!I	Water	Depth	Туре		Coring	3	Depth	Level		Otratura Dagariation		ľ
10.15 - 11.10	weii	Strikes			TCR	SCR	RQD	(m)	(m)	Legena	Stratum Description		
11.10 - 12.66 5 100 44 38 12.66 4.05 12.66 - 14.20 2 100 100 96 14.20 - 14.58 18 100 29 29 14.58 2.13 15.46 - 15.86 15 100 25 0 15.86 15.86 15 100 25 0 15.86 15.86 15 100 25 0 15.86 17.04 2 100 100 100 17.04 - 21.07 3 97 87 86			10.15 - 11.10	2	88	88	88	10.15	6.56		massive LIMESTONE. Very occasion		<u> </u> .
12.66 - 14.20 2 100 100 96 14.20 2.51			11.10 - 12.66	5	100	44	38	11.10	5.61		massive LIMESTONE. pellety / slight	ium grained, ntly oolitic	11 -
14.20 - 14.58			12.66 - 14.20	2	100	100	96	12.66	4.05		massive LIMESTONE. pellety / slight	ntly oolitic	13 -
14.58 - 15.46 2 100 100 100 15.46 - 15.86 15 100 25 0 15.86 - 17.04 2 100 100 100 17.04 - 21.07 3 97 87 86			14.20 - 14.58	18	100	29	29	14.20	2.51				
15.46 - 15.86			14.58 - 15.46	2	100	100	100	14.58	2.13		joints Strong. fresh, pale grey, fine to med massive LIMESTONE. Minor white	ium grained,	15
Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. pellety / slightly oolitic texture, minor thick shelled brachlopods 17.04 - 21.07 3 97 87 86 Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Slightly pellety scattered fine bioclastic debris with occasional coarse shelled brachlopod fragment 18 17.04 - 21.07 3 97 87 86			15.46 - 15.86	15	100	25	0	15.46	1.25		massive LIMESTONE. White calcite	fill and weak	
Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Slightly pellety scattered fine bioclastic debris with occasional coarse shelled brachiopod fragment 17.04 - 21.07 3 97 87 86 Continued on next sheet			15.86 - 17.04	2	100	100	100	15.86	0.85		Strong. fresh, pale grey, fine to med massive LIMESTONE. pellety / slight	ium grained, ntly oolitic	16 -
Continued on next sheet			17.04 - 21.07	3	97	87	86	17.04	-0.33		massive LIMESTONE. Slightly pelle fine bioclastic debris with occasiona shelled brachiopod fragment	ty scattered	18 -
Remarks	Rema	rks									Continued on next sheet		

							P	ota	rv (Core Log	Borehole N	
Ké	yneti						1 /	Ola	ı y C	Joie Log	Sheet 3 of	
rojec	t Name	. Lackagh C	Quarry	Prelim	inary		oject No.		Co-ords:	530370.59 - 728426.56	Hole Typ	
гојес	i Name	Ground In	vestiga	ation		La	ckagh Qu	arry	Co-orus.	550570.59 - 720420.50	RC Saala	
ocati	on:	Galway							Level:	16.71	Scale 1:50	
lient		Galway Co	ounty (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged E Dave Blar	
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		21.07 - 21.60 21.60 - 22.75 22.75 - 24.34	23	100	53 100 78	40 100 65	21.07 21.60 22.75	-4.36 -4.89 -6.04		Strong. fresh, grey / pale grey, fine to grained, massive LIMESTONE. mindebris and white calcite veinlets, barubble Strong. fresh, grey / pale grey, fine to grained, massive LIMESTONE. Occoarse shelled brachiopod fragment	or bioclastic sal 10cm is to medium assional ts to medium n, einlets grained	222
		24.34 - 24.73	15	92	0	0	24.04			Strong. fresh, pale grey, fine to med massive LIMESTONE. Cavity devel	oped with	
		24.73 - 31.68	2	100	100	100	24.73	-8.02		weak oxidation and pitting / dissolut contacts Strong. fresh, grey, fine to medium massive LIMESTONE. with hairline veinlets dipping at 50 - 70'. Minor so poorly sorted bioclastic debris. Fine stylolites	grained, white calcite cattered	25 25 25 25 25 25 25 25 25 25 25 25 25 2
ema	rke									Continued on next sheet		30

roject Name: ocation: Client: Water Strikes	Lackagh C Ground Inv Galway Galway Co Depth (m)	ounty (ation	inary		oject No. ckagh Qua			Core Log	Sheet 4 of Hole Typ	
ocation:	Ground Inv Galway Galway Co Depth	ounty (ation	inar y							_
Client:	Galway Co	Туре	Council				arry	Co-ords:	530370.59 - 728426.56	RC	
Water Water	Depth	Туре	Council					Level:	16.71	Scale 1:50	
		Туре]				Dates:	13/11/2015 - 21/12/2015	Logged E Dave Blan	-
		/FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
											31
	31.68 - 33.22	7	100	77	55	31.68	-14.97		Strong, fresh, grey, fine to medium of massive LIMESTONE, fine sub-vert 31.78m calcite filled vugs locally dev	ical stylolites.	32
	33.22 - 37.10	2	100	97	95	33.22	-16.51		Strong. fresh, grey, fine to medium of massive LIMESTONE. Small scatter very rare coarse shell and coral fragfine stylolites	red bioclasts,	35
	37.10 - 38.70	6	100	59	51	37.10	-20.39		Strong. fresh, brownish pale grey, fin grained, massive LIMESTONE. Fine scattered bioclastic debris, minor ve stylolites	e grained	37
	38.70 - 40.45	2	100	100	100	38.70	-21.99		Strong, fresh, grey, fine to medium of massive LIMESTONE. Very minor s bioclastic debris, minor orange limor along a joint surface at 39.35m	cattered	39

Since Strong Free Singer Sing											Borehole No	Э.			
Sheef of 28 speed Name: Lackagh Quarry Preliminary Ground Investigation Found Investigation		_					R	ota	ry C	Core Log	BH01				
Jackagh Quary Cation: Galway Level: 16.71 Galway County Council Type Coring Depth Level: 13/11/2015 - 21/12/2015 Galway County Council Legend Stratum Description Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Minor blockastic debris, and fine styloittes 40.45 - 43.30 3 100 90 88 43.30 - 44.30 6 90 9 0 44.30 - 27.59 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Fine vuggy texture and fins syloittes 44.30 - 82.98 6 100 96 91 Marks	Reynetix								,						
Level: 16.71 15.9 Galway County Council Dates: 13/11/2015 - 21/12/2015 Logged By Dave Blaney [et] Water Depth Type Coring Depth Level Legend Stratum Description Water Combined in Fig. 1 Total SCR RQD (m) (m) (m) Coring Depth Level Legend Stratum Description 40.45 - 43.30 3 100 90 88 43.30 - 28.59 43.30 - 44.30 6 90 9 0 444.30 - 27.50 Storag fresh, grey, fine to medium grained, measive LIMESTONE. Minor biodisels debris, and fine styloilles in measing the Limestone Lim	roject Name:	Lackagh C	Quarry	Prelim	inary			arry	Co-ords:	530370.59 - 728426.56		9			
callon: Galway County Council ent: Galway County Council ent: Galway County Council Dates: 13/11/2015 - 21/12/2015			vestige	ation		La	ickagn Qu	arry							
Water Depth Type Coring Depth Strikes Coring Corin	ocation:	Galway							Level:	16.71					
Strikes (m) /FI TCR SCR ROD (m) (m) (m) Legend Stratum Description 40.45 - 23.74 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Minor bioclastic debris, and fine styloitles 43.30 - 44.30 8 90 9 0 44.30 - 27.59 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Fine vuggy texture and fant styloitles 5 strong, fresh, grey, fine to medium grained, massive LIMESTONE. Fine vuggy texture and fant styloitles 44.30 - 27.59 Strong, fresh, light grey, fine to medium grained, massive LIMESTONE. Scarebed biocoxical control of solidary consts. Limestone biocoxical control of solidary contr	lient:	Galway Co	ounty (Council					Dates:	13/11/2015 - 21/12/2015	Sheet 5 of 28 Hole Type RC Scale 1:50 Logged By Dave Blane on m grained, clastic debris, grained, bioclastic ed brachiopods ed fine vuggy licite veinlets dip 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Minor bioclastic debris, and fine styloilities 40.45 - 43.30					Coring	J			Legend	Stratum Description	,				
43.30 - 44.30 6 90 9 0 44.30 -27.59 Strong, fresh, light grey, fine to medium grained, massive LIMESTONE. Scattered bioclastic debits, fragments of coarse shelled brachlopods or solitary corals. locally developed fine vuggy texture (49.1 - 49.55m). White calcite veinlets dip 9°, azimuth 02° to core invert 44.30 - 52.98 6 100 96 91	Strikes									Strong. fresh, grey, fine to medium of massive LIMESTONE. Minor biocla	grained, stic debris,	41 42			
anasive LIMESTONE. Scattered bioclastic debris, fragments of coarse shelled brachiopods or solitary corals. Icoally developed fine vuggy texture (49,1 - 49,55m). White calcite veinlets dip 90°, azimuth 020° to core invert 44.30 - 52.98 6 100 96 91 45. Continued on next sheet Continued on next sheet		43.30 - 44.30	6	90	9	0				massive LIMESTONE. Fine vuggy t	exture and	44			
		44.30 - 52.98	6	100	96	91	44.30	-27.59		massive LIMESTONE. Scattered bidebris, fragments of coarse shelled or solitary corals. locally developed texture (49.1 - 49.55m). White calcii 90', azimuth 020' to core invert	oclastic brachiopods fine vuggy te veinlets dip	45 46 47 48			
	marks										AGS	ì			

	<u></u>										Borehole N	lo.
Ke	yneti						R	ota	ry C	Core Log	BH01	
						-					Sheet 6 of	
Projec	t Name	Lackagh C Ground In	Quarry vestiga	Prelim ation	inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Typ RC	е
Locati	on:	Galway						<u> </u>	Level:	16.71	Scale	
				_							1:50 Logged E	3v
Client	:	Galway Co	ounty (1			ı	ı	Dates:	13/11/2015 - 21/12/2015	Dave Blan	
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
												51 -
												52 -
							52.98	-36.27		Strong. fresh, light grey, fine to med massive LIMESTONE. Minor fine s	ium grained, tylolites	53 -
		52.98 - 53.74	9	97	37	13					•	
							53.74	-37.03		Strong. fresh, light grey, fine to med	ium grained,	-
										massive LIMESTONE. Very rare sm fragments, fine stylolites	nall bioclastic	54 -
		53.74 - 56.10	3	94	94	90						55 -
												56 -
							56.10	-39.39		Strong. fresh, grey, medium grained LIMESTONE. Pellety texture with so	I, massive	
										bioclastic fragments and faint styloli	tes.	
												57 -
		56.10 - 58.60	3	100	96	92						
												58 -
							58.60	-41.89		Strong. fresh, light grey, fine to med		-
										massive LIMESTONE. Minor bioclar and fine stylolites	stic debris,	59 -
												60
Rema	rks									Continued on next sheet		60 -
5.114												B

Project Name: Lackagh Quarry Preliminary Ground Investigation Location: Galway Co-ords: 530370.59 - 728426.56 Location: Galway Level: 16.71 Client: Galway County Council Well Water Strikes Depth Type Coring Depth (m) Type TCR SCR RQD (m) Co-ords: 530370.59 - 728426.56 Level: 16.71 Dates: 13/11/2015 - 21/12/2015	Scale 1:50 Logged By Dave Blaney
Project Name: Lackagh Quarry Preliminary Ground Investigation Project No. Lackagh Quarry Location: Galway Level: 16.71 Client: Galway County Council Well Water Strikes (m) Type Coring Depth (m) Tork SCR RQD (m) Level Legend Stratum Description Stratum Description Stratum Description Project No. Co-ords: 530370.59 - 728426.56 Level: 16.71 Dates: 13/11/2015 - 21/12/2015	Hole Type RC Scale 1:50 Logged By Dave Blaney
Location: Galway Level: 16.71 Client: Galway County Council Dates: 13/11/2015 - 21/12/2015 Well Water Strikes (m) Type Coring Depth (m) Level (m) Stratum Description (m) Co-ords: 5303/0.59 - 728426.56 Lackagh Quarry Co-ords: 5303/0.59 - 728426.56 Lackagh Quarry Level: 16.71 Dates: 13/11/2015 - 21/12/2015	RC Scale 1:50 Logged By Dave Blaney
Client: Galway County Council Well Water Strikes (m) Type Coring Depth (m) TCR SCR RQD Depth (m) Level (m) Legend Stratum Description	1:50 Logged By Dave Blaney
Well Strikes Depth (m) Type Coring Depth (m) Level (m) Legend Stratum Description	Logged By Dave Blaney
Well Strikes Depth (m) Type Coring Depth (m) Level (m) Legend Stratum Description	Dave Blaney
Well Strikes (m) /FI TCR SCR RQD (m) Legend Stratum Desc	cription
58.60 - 61.47 3 100 99 99	
	61
61.47 -44.76 Strong. fresh, light grey, fine massive LIMESTONE. Fine	to medium grained,
61.47 - 62.25 10 100 55 47 61.94m a 1cm thick white ca	alcite vein dipping at
62.25 -45.54 Strong, fresh, grey, fine to m	
massive LIMESTONE. Occa	asional fine stylolite
62.25 - 63.73 1 100 100 100	63
63.73 -47.02	. Con the second issue
63.73 - 64.22 10 94 69 61 Strong, fresh, greynight grey	NE. Minor bioclastic 64
64.22 debris, and fine stylolites. So (6mm wide) irregular shaped	d with orange/brown
limonitic infill Strong. fresh, pale grey, fine	to medium grained,
massive LIMESTONE. Incipi	d faint stylolites
	65
64.22 - 67.85 3 100 100 100	66
	67
67.88 -51.17 Strong. fresh, grey, fine to m	andium grained
massive LIMESTONE. Mino	
67.85 - 68.78 9 92 77 60 and fine stylolites	
	69
	70
Continued on nex	xt sheet 70

Kę	yneti						R	ota	ry C	Core Log	Borehole N BH01 Sheet 8 of	I
Projec	t Name	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Typ RC	е
Locati	on:	Galway				•		-	Level:	16.71	Scale 1:50	
Client		Galway Co	ounty (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged E Dave Blar	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		72.31 - 73.39 73.39 - 75.70 75.70 - 76.37 76.37 - 77.60	3 12 2 20	98 100 100 100	96 30 94 67 100	96 19 94 16 95	72.31 73.39 75.70 76.37	-55.60 -56.68 -59.66 -60.89 -61.49		Strong. fresh, grey, fine to medium massive LIMESTONE. Minor biocla and fine stylolites. Axial parallel join Strong. fresh, pale grey, fine graine LIMESTONE. Minor fine stylolites Strong. fresh, pale grey, fine to medium massive LIMESTONE. Fine stylolite stylolites Strong. fresh, grey, fine to medium massive LIMESTONE. Fine stylolite calcite vein, 78.16m 1cm thick white calcite vein (Fe stains) Strong. fresh, pale grey, fine graine LIMESTONE. Numerous stylolites	lium grained, thick white e orange	71 - 72 - 73 - 74 - 75 - 76 - 77 - 78 -
										Continued on next sheet		80 -
Rema	rks										AG	S

Ke	yneti						R	ota	ry C	Core Log	Borehole N BH01	
		Lackagh C	Quarry	Prelim	inarv	Pro	oject No.				Sheet 9 of 2 Hole Type	
rojed	t Name	Ground In	vestiga	ation	- ,		ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	RC Scale	
ocati	on:	Galway							Level:	16.71	1:50	
lient	:	Galway Co	ounty (Counci					Dates:	13/11/2015 - 21/12/2015	Logged B Dave Blan	
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		78.20 - 86.15	3	99	99	98						81 82 83
							86.15	-69.44		Strong. fresh, grey, fine to medium of massive LIMESTONE. Occasional sine grained bioclastic debris. 87.060 white calcite vein	tylolites and	86
		86.15 - 88.77	2	100	96	96	00.7-					8
		88.77 - 90.30	7	100	49	23	88.77	-72.06		Strong. fresh, pale grey, fine to med massive LIMESTONE. 90.09m - 2cr calcite vein. Locally developed fine v	n thick white	8!
										Continued on next sheet		90

1								_	_	Borehole No.
						R	ota	rv C	Core Log	BH01
Keyneti								,		Sheet 10 of 28
Project Name	Lackagh (Ground In	Quarry vestica	Prelim ation	inary		oject No. ickagh Qu	arrv	Co-ords:	530370.59 - 728426.56	Hole Type RC
ocation:	Galway				LC	ionagii Qu	uny	Level:	16.71	Scale
.ocation.	Galway							Level.	10.71	1:50
Client:	Galway Co	ounty	Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Well Water		Туре		Coring)	Depth	Level	Legend	Stratum Description	
Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description	
						90.30	-73.59			
						00.00	70.00		Strong. fresh, pale grey, fine to med massive LIMESTONE. Minor faint s	lium grained, tylolites
										91
										92
90.3										
	90.30 - 95.95	2	100	99	98					93
										94
										95
						95.95	-79.24		Strong. fresh, pale grey, fine to med massive LIMESTONE. small scatter	lium grained, 96
									with some large (7cm dia.) coarse s brachiopods	helled
									S. do. nopodo	
										97
	95.95 - 100.33	3	99	94	89					98
9:	00.00			0.						90
										99
									Continued on post sheet	100
emarks	Continued on next shee							Continued on next sheet		
										AGS
										ACC

17		_					R	ota	ry C	Core Log		
Ke	ynetix								<i>J</i>			
Projed	ct Name:	Lackagh Ground Ir	Quarry nvestiga	Prelim ation	inary		oject No. ckagh Qu	arrv	Co-ords:	530370.59 - 728426.56		ре
Locat	on:	Galway					g =-	,	Level:	16.71	Scale 1:50	
Client	:	Galway C	County	Counci	l				Dates:	13/11/2015 - 21/12/2015	1:50 Logged By Dave Blaney Jum grained, all partially a thick white 10: Jum grained, randomly ets over top and fine 10: Jum grained, randomly ets over top and fine 10: Jum grained, randomly ets over top and fine	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description	1	
		100.33 - 102.74	6	97	85	71	100.33	-83.62		Strong. fresh, pale grey, fine to mec massive LIMESTONE. Scattered sr oxidised vugs. 101.4 & 101.43m 1c calcite veins dip 90' Azimuth 360'	nall partially	101
		102.74 - 105.90	3	100	99	99	102.74	-86.03		Strong. fresh, pale grey, fine to mec massive LIMESTONE. Fine bioclas scattered throughout		103
	_							-89.19		Strong fresh hale grey fine to med	dium grained	108
		105.90 - 108.60	2	100	100	99				Strong. fresh, pale grey, fine to medium grained massive LIMESTONE. Thin (c.1mm), randomly orientated white / brown calcite veinlets over to 40cm. scattered fine bioclastic debris and fine stylolites	n), randomly nlets over top	107
	_	108.60 -91.89 Strong. fresh, pale grey, fine to medium graine massive LIMESTONE. Occasional scattered fi bioclastic debris and fine stylolites . Minor whit calcite veining dipping at 85' to 180'						scattered fine Minor white	108			
								110				
Rema	rks			1	1					Continued on next sheet		

-							R	ota	rv (Core Log	Borehole No BH01	
Kę	ynetix							Ota		2010 209	Sheet 12 of 2	28
rojec	t Name:	Lackagh (Ground Ir	Quarry	Prelim	inary		oject No.		Co-ords:	530370.59 - 728426.56	Hole Type	9
ocatio	on:	Galway	ivestige	allOH		La	ckagh Qu	ally	Level:	16.71	RC Scale	
ocalic	OII.									10.71	1:50 Logged By	
lient:		Galway C	ounty (Counci					Dates:	13/11/2015 - 21/12/2015	Dave Blane	-
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		108.60 - 111.55	5	100	98	86					•	11
		111.55 - 113.73	1	100	100	100	111.55	-94.84		Strong. fresh, grey, fine grained, ma LIMESTONE. Fine black stylolites		11:
		113.73 - 114.33	3	100	0	0	113.73 114.33	-97.02 -97.62		Strong. fresh, grey, fine grained, m. LIMESTONE. Fine grained bioclast Axial parallel jointing	ic debris.	11
		114.33 - 119.52	1	100	100	98				Strong. fresh, grey, fine to medium massive LIMESTONE. Disseminate grained bioclastic debris	ed very fine	111
	-						119.52	-102.81		Strong. fresh, pale grey, fine to med massive LIMESTONE. Faint pellety etched stylolites and scattered sma	ium grained, texture,	11

Ke	ynetix	_				Rotary Core Log					Borehole I BH0' Sheet 13 o	1
rojec	t Name:	Lackagh (Ground Ir	Quarry nvestiga	Prelim ation	inary		oject No. ckagh Qua	arry	Co-ords:	530370.59 - 728426.56	Hole Typ RC	эе
ocati	on:	Galway				·			Level:	16.71	Scale 1:50	
lient		Galway C	ounty (Counci	l				Dates:	13/11/2015 - 21/12/2015	Logged I Dave Blar	
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		Ť
		119.52 - 127.29	4	100	95	87				weakly oxidised. Disseminated fine grabioclastic debris	ained	121 122 123 124 125
		127.29 - 128.75	6	99	97	82	127.29	-110.58		Strong. fresh, grey, fine to medium gra massive LIMESTONE. Incipient mottle and scattered fine bioclastic debris.	ined, d texture	128
							128.75	-112.04		Strong. fresh, dark grey, fine to mediur massive LIMESTONE. Wispy black are partings. Scattered fine bioclastic debr some coarse shelled brachiopods / ga thick black stylolites with argillic infill. Owhite calcite veinlet	gillaceous is with stropods.	129
										Continued on next sheet		- 130

											Borehole No.
Ke	ynetix						R	ota	ry C	Core Log	BH01
											Sheet 14 of 28
Projec	t Name:	Lackagh (Ground Ir			inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC
Locati	on:	Galway							Level:	16.71	Scale 1:50
Client:		Galway C	ounty (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Well	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description	
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		·	
											131
											132
		128.75 -	1	100	97	97					
		134.90	'	100	01						
											133
											134
	-						134.90	-118.19		Strong. fresh, dark grey, fine to med massive LIMESTONE. Wispy black	dium grained, 135
		134.90 -	4	84	84	84				partings. Scattered fine bioclastic de some coarse shelled brachiopods.	
		136.05	4	84	84	84					
	-						136.05	-119.34		Strong. fresh, dark grey, fine to med	lium grainad
										massive LIMESTONE. Weak intract texture minor stylolites and black ar	astic breccia
		136.05 -	3	100	100	95					g p.a
		137.52		100	100	33					137
							137.52	-120.81		Strong. fresh, grey, fine to medium gmassive LIMESTONE. Small scatte	grained, red bioclasts
										incipient intraclastic breccia texture developed minor discontinuous white	locally
										veinlets	
		137.52 -	2	100	100	100					
		141.84		100	100	100					139
										Continued on next sheet	40
Rema	rks		1	1		I	I	I .		Continued on next silect	

											Borehole	No.
V	W O The						R	Core Log	BH0	1		
IV.	netix									O	Sheet 15 c	of 28
rojed	ct Name:	Lackagh (Ground Ir			inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Ty _l RC	pe
ocati	ion:	Galway							Level:	16.71	Scale 1:50	
lient	:	Galway C	ounty (Counci]				Dates:	13/11/2015 - 21/12/2015	Logged Dave Bla	•
Vell	Water	Depth	Туре		Coring		Depth	Level	Legend	Stratum Description		
	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)		<u> </u>		
												141
							141.84	-125.13		Strong. fresh, grey, fine to medium g	rained,	142
		141.84 -								massive LIMESTONE. Small scatter incipient bioturbated / burrowed textu		
		142.93	3	100	100	100						
							142.93	-126.22				
		142.93 -					112.00	120.22		Strong. fresh, pale grey, fine to medi massive LIMESTONE Pellety / almo	um grained, ost oolitic	143
		143.70	0	100	100	100				texture		
							143.70	-126.99		Strong. fresh, grey, fine to medium g		
										massive LIMESTONE. Intraclastic br texture sub-rounded clasts 0.5 - 2.0c	m dia.	144
										possibly related to bioturbation / burr Minor stylolites and a very rare biock		
												14
		143.70 - 148.30	1	100	100	100						146
		140.50										
												147
												'
							140.00	104.50				148
		148.30 -	10	100	0	0	148.30	-131.59		Core is crosscut by a 2cm thick band very weak, fresh, fine grained Black		
		148.90	10	100			148.90	-132.19		MUDSTONE. Soft / Friable texture, I altered to clay dip 32' to 060'		
							170.80	-132.18		Strong. fresh, dark grey / black, fine grained, massive LIMESTONE. Intra	clastic	149
										breccia texture poorly sorted, very imangular clasts of fine grained limesto	ne (micrite)	
										in a black / dark grey locally argillace Intensity of brecciation decreasing w		
										Continued on next sheet		50

<u></u>										Borehole No.
	_					R	ota	ry C	Core Log	BH01
Keynetix								,	5	Sheet 16 of 28
Project Name:	Lackagh (Quarry	Prelim ation	inary		roject No. ackagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC
Location:	Galway						<u> </u>	Level:	16.71	Scale 1:50
Client:	Galway C	ounty (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Well Water Strikes	Depth (m)	Type / FI		Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description	
	148.90 - 154.60	2	100	99	97					151 —
	154.60 - 161.75	1	100	100	71	154.60	-137.89		Strong. fresh, grey, fine to medium massive LIMESTONE. Stylolites lor 3mm thick. Minor bioclastic debris. developed incipient intraclastic bred bioturbation textures	cally up to
Remarks				1		1	1		Continued on next sheet	AGS

Keynetix						R	ota	ry C	Core Log	Borehole N BH01	
Project Name:	Lackagh Ground Ir	Quarry nvestiga	Prelim ation	inary		oject No. ckagh Qu		Co-ords:	530370.59 - 728426.56	Sheet 17 of Hole Type RC	
Location:	Galway							Level:	16.71	Scale 1:50	
Client:	Galway C	County (Counci					Dates:	13/11/2015 - 21/12/2015	Logged B Dave Blan	
Well Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description	ı	
			TOIN .			161.75	-145.04		Strong. fresh, pale grey, fine to mec massive LIMESTONE. Locally deve pellety / oolitic texture. Scattered bi	loped	161
	161.75 - 166.30	1	100	100	98				debris		163 ·
											165 166
	166.30 - 168.90	1	100	100	99	166.30	-149.59		Strong. fresh, pale grey, fine to med massive LIMESTONE. Numerous objects and white calcite infilling s	oarse mall voids	167
						168.90 -152.19			Strong. fresh, pale grey, fine to mec massive LIMESTONE. Slight pellety Scattered fine to medium grained b	/ texture.	169
Remarks									Continued on next sheet	AGS	

						D	ota	rv, C	ore Log	Borehole No. BH01
Keynetix						17	Ola	ı y C	Core Log	
	Lackagh	Quarry	Prelim	inarv	Pro	oject No.				Sheet 18 of 28 Hole Type
Project Name:	Ground I	nvestiga	ation			ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	RC
Location:	Galway							Level:	16.71	Scale
Client:	Galway C	County (Counci	l				Dates:	13/11/2015 - 21/12/2015	1:50 Logged By Dave Blaney
Water	Denth	Type		Coring	3	Denth	l evel			
meconect incorrect in key key mey meconect incorrect in key	Depth (m) 168.90 - 172.00	Type / FI	100	1	100 199	Depth (m)	-155.29	Legend	Stratum Description Strong. fresh, pale grey, fine to med massive LIMESTONE.	171 -
	175.65 - 177.00	1	100	100	100	175.65	-158.94		Strong. fresh, pale grey, fine to med massive LIMESTONE. Scattered cobrachiopods	arse shelled 176 -
	177.00 - 182.50	1	100	100	100	177.00	-160.29		Strong. fresh, grey, fine to medium of massive LIMESTONE. Minor stylolit to 2mm thick. Scattered fine bioclass	es, some up
Remarks							•			
										AGS

Keynetix	_					R	ota	ry C	Core Log	Borehole No. BH01
Project Name:	Lackagh (Ground Ir	Quarry	Prelim	inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Sheet 19 of 28 Hole Type RC
Location:	Galway	ivestige	ation		La	ickagii Qu	ally	Level:	16.71	Scale
Client:	Galway C	ounty (Counci	l				Dates:	13/11/2015 - 21/12/2015	1:50 Logged By Dave Blaney
Well Water	Depth	Туре		Coring	1	Depth	Level	Legend	Stratum Description	
Viell Strikes	(m) 182.50 - 186.80	/ FI	100	100	RQD 99	(m)	-165.79		Strong. fresh, pale grey, fine to med massive LIMESTONE. Locally deve incipient intraclastic breccia texture. stylolites and minor bioclasts	loped
_						186.80	-170.09		Cavity - No recovery. Pitting / dissol and slight brown oxidation on contain	ution textures cts
	186.80 - 189.00	0	0	0	0					188 -
	189.00 - 190.30		100	0	0	189.00	-172.29		Soft to firm, light brown, fine grained CLAY. Some tabular / angular clasts brown oxidised mudstone within the	of light

											Borehole N	lo.
W.							R	ota	ry C	Core Log	BH01	
Ke	ynetix								<u>, </u>		Sheet 20 of	
Projec	t Name:	Lackagh Ground I	Quarry	Prelim	inary		oject No.	orn.	Co-ords:	530370.59 - 728426.56	Hole Type	е
			rivestiga	allon		La	ckagh Qu	arry			RC Scale	
Locati	on:	Galway							Level:	16.71	1:50	
Client		Galway (County (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged B Dave Blan	-
\\/all	Water	Depth	Туре		Coring	3	Depth	Level	Logond	Stratum Description		
Well	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description		
			0						<u> </u>			
							190.30	-173.59		Strong. fresh, grey, fine to medium massive LIMESTONE.	grained,	1.
		190.30 -	0	100	100	100				Massive LIMESTONE.		
		191.20		100	100	100						 191 -
							191.20	-174.49		Strong. fresh, grey / dark grey, fine	to medium	
										grained, massive LIMESTONE.	to medium	
		191.20 -	8	100	64	41						 192 -
		192.85		100	04							
							192.85	-176.14		Strong. fresh, pale grey, fine to med	lium grained,	193 -
										massive LIMESTONE. Light brown coating joint surfaces	sandy clay	
												 194 -
		192.85 -	1	100	100	100						34
		195.70	'	100	100	100						
											,	195 -
												33
							195.70	-178.99		Strong froch pale groy fine to made	lium grainad	
										Strong. fresh, pale grey, fine to med massive LIMESTONE. Scattered co	parse shelled	 196 -
										brachiopods		30
												 197 -
		195.70 -	1	100	100	100						97
		198.70										
												100
												198 -
							198.70	-181.99		Otrono for all little		
							.55.76	.51.55		Strong. fresh, light grey / grey, fine to grained, massive LIMESTONE. Occ	to medium casional	
										coarse shelled brachiopod, locally of incipient intraclastic breccia texture	leveloped	199 -
										היסוףוכיות היות מטומטונים טופטטומ נפגנעורפ		
Rema	rke									Continued on next sheet		200 -
rzilig	100											ì
											AGS	3

Clocation: Cround investigation Lackagh Quarry La	Cocation Ground Investigation Lackagh Quarry Lackagh Quarry Level 18.71 Level 18.71 Level 19.71 Level 19.71 Level 19.71 Level 19.71 Level 19.71 Level Level 19.71 Level	Ke	ynetix							ota	ry C	Core Log	Borehole No. BH01 Sheet 21 of 28
Close Continued on rest sheet Continue	Close Continued on metal sheet Continued o	Projec	t Name:	Lackagh (Ground Ir	Quarry nvestiga	Prelim ation	inary		-	arry	Co-ords:	530370.59 - 728426.56	+
Value Valu	Marker Marker Depth Strikes Stratum Depth Depth Stratum Depth Depth Stratum Depth	Locati	on:	Galway							Level:	16.71	
Strikes	Strikes	Client		Galway C	County (Counci	l				Dates:	13/11/2015 - 21/12/2015	
198.70 2 91 91 91 91 203.00 -186.29 Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Minor coarse shelled breachingods Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled breachingods Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled breachingods Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled breachingods Strong, fresh, grey, fine to medium grained, massive LIMESTONE.	198.70 2 91 91 91 203.00 -186.29 Strong, fresh, pale grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled brachispods 203.90 - 1 1 100 98 98 207.50 -190.79 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled brachispods 207.50 - 190.79 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Scattered coarse shelled brachispods 208 - 207.50 - 190.79 Strong, fresh, grey, fine to medium grained, massive LIMESTONE. 208 - 20	Well									Legend	Stratum Description	1
Pomarka	Izellializa			203.00 - 203.90 - 203.90 -	9	91	91	91	203.90	-187.19		massive LIMESTONE. Minor coars brachiopods. Joints coated with light sandy clay Strong. fresh, pale grey, fine to medimassive LIMESTONE. Scattered or brachiopods Strong. fresh, grey, fine to medium massive LIMESTONE.	dium grained, e shelled at brown fine 204 — 205 — 206 — 207 — 208 — 209

											Borehole No.
-		L					R	ota	ry C	Core Log	BH01
KE	ynetix								,	5	Sheet 22 of 28
Projec	t Name:	Lackagh Ground Ir	Quarry	Prelim ation	inary		roject No. ackagh Qu	arrv	Co-ords:	530370.59 - 728426.56	Hole Type RC
Locati	on:	Galway						<u>. , </u>	Level:	16.71	Scale 1:50
Client	:	Galway C	County (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Well	Water	Depth	Туре		Coring	J	Depth	Level	Legend	Stratum Description	
vveii	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description	_
											-
											211 —
											212
		207.50 - 214.50	1	100	100	99					
											-
											213
											=
											214
							214.50	-197.79		Strong. fresh, pale grey, fine to med massive LIMESTONE. disseminate	ium grained,
										debris	215
		044.50									-
		214.50 - 216.90	2	100	90	90					210
											216 —
		216.90 -					216.90	-200.19		Strong. fresh, pale grey, fine to med massive LIMESTONE. Slightly vugg	
		217.60	3	100	100	100	047.00	000.00		oxidation focused upon vugs	-
							217.60	-200.89		Strong. fresh, light grey / grey, fine to grained, massive LIMESTONE.	
											218 — - -
		217.60 -		07	0.7	70					
		221.55	4	97	87	78					219 -
Rema	rks									Continued on next sheet	220
											AGS

Keynetix	_					R	ota	ry C	Core Log	Borehole BH0 Sheet 23 o	1
Project Name:	Lackagh (Ground Ir			inary		oject No. ckagh Qu	arrv	Co-ords:	530370.59 - 728426.56	Hole Ty	
Location:	Galway							Level:	16.71	Scale 1:50	
Client:	Galway C	ounty (Counci	l				Dates:	13/11/2015 - 21/12/2015	Logged Dave Bla	Ву
Well Water	Depth	Туре		Coring	1	Depth	Level	Legend	Stratum Description		
Strikes	(m)	/FI	TCR	SCR	RQD	(m) 221.55	-204.84		Strong, fresh, pale grey, fine to med	ium grained,	221 -
	221.55 - 223.55	5	100	98	96				massive LIMESTONE. Minor oxidati brown clay localised along joints and stylolites	ion and light	222 -
	223.55 - 226.55	3	97	84	81	223.55	-206.84		Strong. fresh, pale grey/ grey, mediumassive LIMESTONE. Distinct pelle fine grained bioclastic debris. 226.4 evidence of oxidation, dissolution (pashallowly dipping joint plane	ty texture, - 226.5	224 -
						226.55	-209.84		Strong fresh pole grow fine to made	ium grained	226 -
	226.55 - 229.10	3	100	97	95		226.55 -209.84		Strong. fresh, pale grey, fine to med massive LIMESTONE. slight dissolu oxidation focused on some joint surf	ition and	227 -
						000.40	040.00				228 -
	229.10 - 229.20	0	0	0	0	229.10 229.20	-212.39 -212.49		Cavity infilled with light brown soft / clay Strong. fresh, pale grey, fine to med		

											Borehole No.
.,7		L					R	ota	ry C	Core Log	BH01
Kęj	netix								,	3 - 3	Sheet 24 of 28
Project	Name:	Lackagh (Ground Ir			inary		oject No. ackagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC
Locatio	n:	Galway				LC	ionagii wa	uny	Level:	16.71	Scale
Client:		Galway C	ounty (Counci	l				Dates:	13/11/2015 - 21/12/2015	1:50 Logged By Dave Blaney
	Water	Depth	Туре		Coring	3	Depth	Level	Legend	Stratum Description	
vveii	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description	
		229.20 -	4	95	91	86					
		231.10									
							231.10	-214.39		Strong. fresh, pale grey, fine to med massive LIMESTONE.	ium grained,
		231.10 -	1	100	98	95					232
		233.20									
							233.20	-216.49		Strong. fresh, pale grey, fine to med	
		233.20 - 234.15	11	91	79	45				massive LIMESTONE. Joints and frainfilled with light brown fine / mediur sand. 232.78 2cm white calcite vein	n grained
	_	234.13					224.45	247.44			234
							234.15	-217.44		Strong. fresh, grey, fine to medium of massive LIMESTONE. Locally develouggy texture. 236.6m joint with inte	loped fine
										orange Fe Staining.	inse bright
											235
		234.15 - 237.55	6	99	80	70					236
											237
							237.55	-220.84		CAVITY - coarse grained yellow sar	id and
						angular gravel with some light brown Recover 30 - 35%	n silt. 238				
		237.55 - 239.20	0	0	0	0					
							239.20	-222.49		Strong. fresh, light grey / grey, fine t	239 o medium
- 1										grained, massive LIMESTONE. Loc developed coarse vuggy texture - v 5mm dia.	ally
											l l

239.20	Ke	ynetix)_						ota	ry C	Core Log	Borehole N BH01 Sheet 25 of	1 F 28
District Californ Country Council District Country Cou	Projec	t Name:				inary			arry	Co-ords:	530370.59 - 728426.56	RC	е
Well Water Depth Type Coring Depth Strikes Charter Depth Strikes Charter Depth Strikes Charter Charter Depth Strikes Charter Depth Strikes Charter Depth Strikes Charter Depth Strikes Charter Depth Depth Charter Depth Charter Depth Dep	Locati	on:	Galway							Level:	16.71		
Strikes	Client		Galway C	County (Counci	I				Dates:	13/11/2015 - 21/12/2015		-
241.40 6 50 19 13 241.40 - 224.69 241.40 - 224.69 38trong fresh, pale grey, fine to medium grained, massive LIMESTONE. Fine grained orange brown sand coating joint surfaces 241.40 - 243.90 4 100 97 95 243.90 - 227.19 243.90 - 227.19 243.90 - 227.19 244.58 a sighthy weathered; pale grey, fine to medium grained, massive LIMESTONE. Southered poorly sorted biodastic debris. Fine grained orange brown sand coating joint surfaces 245.58 - 7 85 36 29 245.58 - 228.87 246.58 - 228.87 247.25 - 0 0 0 0 0 247.25 - 230.54 248.37 - 231.66 38trong fresh, pale grey (grey, fine to medium grained, massive LIMESTONE. Fine grained debris discontinuity with black argillacous lamina. Orange brown clayey sand coating joint surfaces 246. 247.25 - 230.54 38trong fresh, pale grey (grey, motted, fine to medium grained, massive LIMESTONE. Fine grained debris debris. Strong, fresh, pale grey (grey, motted, fine to medium grained, massive LIMESTONE. Fine grained grained, massive LIMESTONE. Proorly sorted biodastic debris.	Well					_	1		1	Legend	Stratum Description		
241.40 - 4 100 97 95 243.90			239.20 -										241 -
243.90 - 227.19 Strong. slightly weathered, pale grey, fine to medium grained, massive LIMESTONE. 244. 243.90 - 245.58				4	100	97	95	241.40	-224.69		massive LIMESTONE. Scattered po bioclastic debris. Fine grained orange	orly sorted	242
245.58		_	243.90 -					243.90	-227.19		medium grained, massive LIMESTO 243.9-244.35m axial parallel discon black argillaceous lamina. Orange b	ONE. tinuity with	244
247.25		_	245.58	7	85	36	29	245.58	-228.87			own fine to	245 246
247.25 - 248.37 4 100 61 38 248.37 - 250.20 3 100 97 93 248.37 - 250.20 3 100 97 93 248.37 - 250.20 Continued on next sheet				0	0	0	0	0.7.05	000.54				247
248.37 - 250.20 3 100 97 93 Strong, fresh, dark grey, medium grained, massive LIMESTONE. Poorly sorted bioclastic debris				4	100	61	38	247.25	-230.54		medium grained, massive LIMESTO vuggy texture with minor oxidation / localised within the vugs. Some axid	ONE. Fine Fe staining	248
Continued on next sneet				3	100	97	93	248.37	-231.66		massive LIMESTONE. Poorly sorte		249
Tellidiks	Rema	rks									Continued on next sheet		2 50

Ke	ynetix)_					R	ota	ry (Core Log	Borehole No. BH01 Sheet 26 of 28	
Projec	ct Name:	Lackagh (Ground Ir			inary		oject No. ckagh Qua	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC	
Locati	on:	Galway							Level:	16.71	Scale 1:50	
Client	:	Galway C	ounty	Council					Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney	
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		250.20 - 253.00	2	100	98	98	250.20	-233.49		Strong. fresh, dark grey, medium gr massive LIMESTONE. Poorly sortedebris. Discontinuous randomly oriecalcite veinlets	d bioclastic	
		253.00 - 255.50	2	100	92	92	253.00	-236.29		Strong. fresh, grey, medium grained LIMESTONE. Scattered poorly sort debris. Incipient intraclastic breccia	ed bioclastic	
		255.50 - 255.90	7	100	0	0	255.50	-238.79		Strong. grey LIMESTONE cross cut dissolution zone bright orange stain	ing and	
		255.90 - 256.90	4	100	60	60	255.90	-239.19		dissolution textures on cavity contact Strong. fresh, grey, medium grained LIMESTONE. Scattered bioclastic d	l, massive 256	
		256.90 - 257.35	22	78	0	0	256.90	-240.19		Moderately strong, black, fine to me LIMESTONE - black argillite rich zo	nes - Rubble	,
		257.35 - 259.40	3	100	68	68	257.35	-240.64		poorly sorted fragments with some surfaces. Moderately strong. black / dark grey medium grained, massive LIMESTC Intraclastic breccia, irregular poorly limestone clasts in a black argillite r	r, fine to ONE. sorted	
		259.40 - 259.50	0	100	0	0	259.40	-242.69		Strong. fresh, dark grey, medium gr massive LIMESTONE.		
Rema	rks									Continued on next sheet	AGS	

Kę	ynetix						R	ota	ry C	Core Log	Borehole No. BH01 Sheet 27 of 28
Projec	t Name:	Lackagh Ground Ir	Quarry nvestiga	Prelim ation	inary		oject No. ckagh Qu	arry	Co-ords:	530370.59 - 728426.56	Hole Type RC
Locati	on:	Galway							Level:	16.71	Scale 1:50
Client:		Galway C	County (Counci	I				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description	1
		259.50 - 263.10 - 263.10 - 263.70 - 263.70 - 266.40	3	100 58	90	0 100	263.10	-246.39 -246.99		Weak, black / grey MUDSTONE, ru parallel to core axis band is 2 - 3cm partially altered to clay. The contact limestone shows evidence of oxidal staining Strong. fresh, grey / pale grey, med massive LIMESTONE. Mottled and bioturbation / burrowing. 265.4 - 26 zone with rubble and coarse brown	thick and with the ion / Fe ium grained, evidence of 5.46 fracture
		266.40 - 267.10	17	100	40	40	266.40	-249.69		Strong. fresh, grey / pale grey, med massive LIMESTONE. Mottled and bioturbation / burrowing. Core is co-coarse brown sand	evidence of
		267.10 - 267.70	2	100	100	100	267.10	-250.39		Strong. fresh, grey / pale grey, med massive LIMESTONE. Mottled and bioturbation / burrowing.	ium grained,
		267.70 - 270.30	6	100	55	52	267.70	-250.99		Strong. fresh, grey / dark grey, med massive LIMESTONE. Occasional axial parallel joint	
Rema	rks					<u> </u>				Continued on next sheet	

Keyneti	×					R	ota	ry C	Core Log	Borehole No. BH01
roject Name	Lackagh Ground I	Quarry	Prelim ation	inary		oject No. ckagh Qu	arrv	Co-ords:	530370.59 - 728426.56	Sheet 28 of 28 Hole Type RC
ocation:	Galway							Level:	16.71	Scale 1:50
lient:	Galway (County (Counci	l				Dates:	13/11/2015 - 21/12/2015	Logged By Dave Blaney
Vell Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description	
	270.30 - 272.40	1	100	100	100	270.30	-253.59		Strong. fresh, grey / dark grey, med massive LIMESTONE.	lium grained, 271
	272.40 - 273.40	0	0	0	0	272.40	-255.69		CAVITY no recovery	273
	273.40 - 274.16	5	79	39	20	273.40	-256.69		Strong. fresh, very pale grey, mediu massive LIMESTONE. Probably a I cavity / unconsolidated sediments	um grained, poulder within
	274.16 - 276.70	0	8	0	0	274.16	-257.45		CAVITY - unconsolidated ground or medium to coarse limestone cobble gravel recovered	
						276.70	-259.99		Ēnd of boreĥole at 276.70 τ	n 277
										278
										279
emarks			<u> </u>							AGS

											Borehole No.	٦
Ke	ynetix	L					R	ota	ry (Core Log	BH03	
									,		Sheet 1 of 11	
Projec	t Name:	Lackagh C Ground In			inary		oject No. ackagh Qua	arn/	Co-ords:	530023.82 - 728382.57	Hole Type RC	
			vestige	ation		Lc	ickayıı Qu	arry			Scale	\dashv
Locati	on:	Galway							Level:	26.26	1:50	
Client:		Galway Co	ounty (Counci					Dates:	13/11/2015 - 09/12/2015	Logged By Dave Blaney	
Well	Water Strikes	Depth (m)	Type / FI		Coring		Depth (m)	Level (m)	Legend	Stratum Description		
	Otrikes	(111)	/ 1 1	TCR	SCR	RQD	(111)	(111)	X//XX//XX	No Recovery		4
		4.15 - 4.42	С				1.20 1.45 2.70 3.00 3.20 3.55 4.00	25.06 24.81 23.56 23.26 23.06 22.71 22.26		Very soft, light brown, sandy CLAY vangular gravel Rubble of sub-angular to sub-round Limestone fragments and minor cre calcite. Lumps of soft light grey/brov (Recovery 0.35m) Stiff, grey brown, sandy CLAY, occa angular gravel and cobbles of dark g limestone Coarse cobbles of dark grey limesto stiff grey brown sandy clay Coarse COBBLES with gravel. Sub- sub-rounded grey / dark grey limest minor pink (tonalitic) granite Core loss Stiff / very stiff, light grey/brown san minor (10 - 15%) scattered angular gravel	ed grey amy coloured vn clay. 2 sional sub grey one with firm / eangular to one with dy CLAY with	
							4.85	21.41		Stiff / very stiff, light grey/brown san angular limestone gravel & cobbles	5	
							6.00	20.26	key key key Incorrect incorrect incorrec key key key Incorrect incorrect incorrect	Core loss	6	
							6.55	19.71	key key key	Stiff / very stiff, light grey/brown san		=
							6.85	19.41		angular limestone gravel, cobbles a occasional boulders Stiff / very stiff, grey / brown sandy (12 - 20%) angular limestone gravel occasional sub-rounded cobbles	CLAY with 7	
							7.65	18.61	incorrect incorrect incorrect key key key incorrect inco	Core loss		
							8.05 8.25	18.21 18.01		Loose angular GRAVEL with cobble with stiff sandy clay Stiff / very stiff, light grey / brown, sa 205 sub-angular / sub-rounded grav occasional sub-rounded cobble and boulder	andy CLAY, rel and	
Rema	-1									Continued on next sheet		\exists

Remarks

Ke	wneti						R	ota	ry C	Core Log	Borehole N	
Projec	t Name	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Sheet 2 of Hole Typ RC	
.ocati	on:	Galway				·			Level:	26.26	Scale 1:50	
lient	:	Galway Co	ounty (Council					Dates:	13/11/2015 - 09/12/2015	Logged E Dave Blar	
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description	•	
							11.55	14.71		Stiff / very stiff, light grey / brown, s 205 sub-angular / sub-rounded grav occasional sub-angular cobbles and boulder	vel and	111
							12.94 12.98	13.32 13.28	key key key Incorrect incorrect key key key Incorrect incorrect key key key	Soft, dark chocolate brown CLAY Core Loss		13
		13.65 - 13.73 13.73 - 13.85	D D				13.65	12.61	moorned incorrect incorrect key key key key	Soft / very soft, greenish grey, fine (recovery 0.5m)	sandy SILT	14
		14.90 - 15.00	D				14.75	11.51	meconect incorrect incorrect incorrect incorrect incorrect incorrect key	Core Loss		1
							16.15 16.45	10.11 9.81	incorrect incorrect incorrect key key key key incorrect incorrect incorrect incorrect key	Soft / firm, grey / green SILT		16
							16.85	9.41	× × × × × × × × × × × × × × × × × × ×	Soft / very soft, grey brown SILT wit clay laminae (Mobilised and coating drilling additive)		
									incorrect incorr	Core loss		18
							18.60	7.66	key key key incorrect incorrect key key key X X X X X X X X	Soft / very soft, grey SILT		
		19.00 - 19.10 19.10 - 19.20 19.25 - 19.30	D D D				19.25	7.01	×××× ××××× ×××××	Soft / firm, grey SILT, locally develo brown laminae (smearing of clay su		19
		19.90 - 20.00	D						× × × × × × × × × × × × × × × × × × ×			
ema	rks									Continued on next sheet		20

Ke	ynetix						R	ota	ry C	Core Log	Borehole No BH03 Sheet 3 of 1	3
rojed	t Name	Lackagh C			inary		oject No. ckagh Qua	arry	Co-ords:	530023.82 - 728382.57	Hole Type RC	е
ocati	on:	Galway							Level:	26.26	Scale 1:50	
lient		Galway Co	ounty (Council					Dates:	13/11/2015 - 09/12/2015	Logged B	•
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description	n	
		20.95 - 21.05 21.30 - 21.40	D D				21.70	4.56 3.26	XXXX XXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX XXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX	Very soft / soft, grey SILT (Recover Soft / firm, grey SILT (Recovery 60		21 22 22 23
25.4 26.2 27.2 27.2	25.50 - 25.60 25.80 - 25.90 26.50 - 26.60	D D				25.20	1.06	XXXX XXXXX XXXXX XXXX XXXX XXXX XXXX XXXX	Soft / very soft, grey SILT (Recover	ry 90%)	25	
	26.70 - 26.80 27.20 - 27.25	D D						×××× ×××× ×××× ×××× ××××			27	
	27.45 - 27.55 27.55 - 27.65	D D				27.50	-1.24	× × × × × × × × × × × × × × × × × × ×	Firm grey SILT with centimetric sca banding	ile horizontal	28	
							28.45	-2.19	×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××	Soft, grey SILT (recovery 60%)		29
							30.00	-3.74	×××××	Continued on next sheet		30

Ke	ynetix						R	ota	ry C	Core Log	Borehole No. BH03
Projec	t Name:	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Sheet 4 of 11 Hole Type RC
Locati	on:	Galway							Level:	26.26	Scale 1:50
Client:		Galway Co	ounty (Counci	I				Dates:	13/11/2015 - 09/12/2015	Logged By Dave Blaney
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description	ı
		30.25 - 30.33	D						×××× ×××× ×××× ×××× ×××× ×××× ××××	Soft / firm grey SILT	31
		31.20 - 31.30 31.35 - 31.45	D D				31.73	-5.47	×××× ×××× ×××× ×××× ×××× ×××× ××××	Firm, grey / brown SILT	32
							32.40	-6.14	×××× ×××× ×××× ×××× ×××× ×××× ××××	Soft, grey SILT	33
		33.70 - 33.80 33.95 - 34.03	D D						(34
							34.60	-8.34	×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××	Soft / Firm, light grey SILT. Minor fir sand	e grained 35
		36.05 - 36.15	D				36.05	-9.79	× × × × × × × × × × × × × × × × × × ×	Loose / medium dense, light grey / SAND (recovery 30%)	brown, silty 36
		36.70 - 36.80	D								37
		38.60 - 38.70	D				38.38	-12.12		Firm, dark chocolate brown organic fibres bottom 0.5m of core coated w grained grey sand	
		38.95 - 39.05 39.25 - 39.30	D D							J - 1. J - J	39
		39.45 - 39.55 39.80 - 39.83	D D						- 316 - 316 - 316 - 316		
		20.00							- 316- 316	Continued on next sheet	40

Kę	Keynerix						R	ota	ry C	Core Log	Borehole N BH03 Sheet 5 of	3
rojec	t Name	Lackagh G			inary		oject No.	arry	Co-ords:	530023.82 - 728382.57	Hole Typ RC	
ocati	on:	Galway				1		-	Level:	26.26	Scale 1:50	
lient		Galway Co	ounty (Council	l				Dates:	13/11/2015 - 09/12/2015	Logged E Dave Blan	-
Vell	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
									916 _ 916 _ - 316 _ 916 - 316 _			
		40.65 - 40.77	D				40.65	-14.39	- ale - ale	Lange (and discondenses for A		
		.0.00								Loose / medium dense, grey, fine to grained SAND (recovery 60%)		
		41.20 - 41.25 41.30 - 41.50	D C				41.00	-14.74	alis — alis - alis — alis - alis — alis - alis — alis	Firm grey / brown, organic CLAY, m brown banding 0.5 - 1cm thick	inor dark	- 4 1
							41.80	-15.54	alis — alis			
42		41.85 - 42.08	С				41.00	-13.34	ale — ale ale — ale - ale — ale	Stiff / very stiff, dark brown, organic 4cm laminated - light / dark brown n scale laminae		42
	42	42.30 - 42.35 42.35 - 42.40	D D				42.40	-16.14		Firm / stiff, dark brown grey, CLAY		
42	42.65 - 42.97	С										
		42.97 - 43.30	С				40.05	40.00				4
		42.97 - 43.30		43.25	-16.99		Soft to firm light grey CLAY					
		44.05 - 44.20	С									4.
		44.05 - 44.20					44.20	-17.94	Incorrect incorrect	Core Loss		╣.
									incorrect incorrect incorrect key key key incorrect incorrect			
							44.85	-18.59	key key key	Firm, dark grey brown CLAY		١,
							45.24	-18.98				4
							45.30	-19.04	alia alia alia alia alia alia	Soft, grey SILT Very Stiff, Dark brown / grey, organi	c CLAY	1
									aleale_ _aleale_ aleale			4
		46.20 - 46.27 46.27 - 46.59	D C						alaala			
		40.27 40.00										
		47.00 47.10										,
		47.00 - 47.10 47.20 - 47.27	D D						116 _ 316 _			4
		47.45 - 47.55	D						- Nr - Shr			
		47.85 - 48.02	С									4
		48.20 - 48.30	D									
		48.45 - 48.70	С									
		49.00 - 49.10	D									4
		49.30 - 49.40	D									
									- 7/6- 7/6 2/8 7/6-			
							50.00	-23.74	- 716- 216 - 716- 216-			50

										Borehole N	lo.
Keynetix	-					R	ota	ry C	Core Log	BH03	3
										Sheet 6 of	
Project Name:	Lackagh Q Ground Inv			inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Hole Typ RC	е
Location:	Galway				•			Level:	26.26	Scale 1:50	
Client:	Galway Co	ounty (Council					Dates:	13/11/2015 - 09/12/2015	Logged E Dave Blan	-
Water	Depth	Туре		Coring	l	Depth	Level				
Well Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description		
						50.05	04.00		Firm grey CLAY, with cobbles of stro limestone rounded to sub-angular	ong pale grey	-
					50.35	-24.09		Soft, light greyish brown, cobbly CL of pale grey limestone, comprise 50			
										51 —	
							0 0 0			51 -	
					51.30	-25.04		Boulder of pale grey massive limest with stylolites rotated to sub-vertical		1 1	
								with stylolics rotated to sub-vertical	onentation		
							000			52 —	
							0009				
					52.56	-26.30	0,0,0	0.676	I A) (]	
						02.00			Soft / firm, brownish grey gravelly C gravel (10 - 20%), sub-rounded coa	rse cobbles /	_
									small boulders (30 - 40%) of light gr limestone. (recovery 80%)	ey massive	53 _
									innoctorio. (rocovery co /s)		-
											-
											54 _
											_
											55 —
											56 —
						56.40	-30.14		Sub-rounded COBBLES with coarse	aravol	
								0,300	coated by soft light grey clay	giavei -	=
								0,000			57 —
						57.15	-30.89	0.000	Soft / firm Pale grey CLAY with ang	ular cobbles	J37 =
									of grey limestone (recovery 40%)	2320.00	=
								F_=_=			
						57.85	-31.59		Soft grey brown CLAY with angular	gravel and	58 —
								<u> </u>	cobbles (Recovery 40%)		-
								<u> </u>			=
								<u> </u>			=
								<u> </u>			59 —
								F			-
								E-E			=
								EEE			=
									Continued on next sheet		60 -
Remarks				1		I.	1		Contained on next sheet		_

)	4			Borehole N	No.
Kew	netix	_					R	ota	ry (Core Log	BH03	3
					-	D-					Sheet 7 of	
Project N	Name:	Lackagh C Ground Inv			inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Hole Typ RC	e
Location:	:	Galway				,			Level:	26.26	Scale	
									<u> </u>		1:50 Logged E	3y
Client:		Galway Co	ounty (I	Dates:	13/11/2015 - 09/12/2015	Dave Blan	
	/ater trikes	Depth (m)	Type / FI	TCR	Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description		
							60.55	-34.29		BOULDER of strong, pale grey, fine grained Limestone	to medium	61 -
									62			
				62.20	-35.94	- 7/k - 2/k	Soft to firm grey brown cobbly CLAY	- cobbles of	1			
					62.52	-36.26	316 - 316 -	angular limestone Stiff brown, organic CLAY		-		
						X X			63			
	6	3.15 - 63.22	D						<u>×</u> × ×			03
		3.38 - 63.43 3.50 - 63.55	D D						× × ×			
									× ×			
	6	3.90 - 63.95	D				64.05	-37.79	× × ×	Loose / medium dense, brown / grey	, medium	64
		4.30 - 64.35 4.90 - 64.95	D D				64.11	-37.85	- stk - stk - stk	grained SAND Firm / stiff, brown / dark brown, orga Finely laminated (0.5 - 1.5mm lamin dark brown. Occasional small white blebs. Millimetric to centimetric scale fine to medium grained sand, locally grading - coarsening down	ae) light / clay flecks / e bands of	65
	6	5.50 - 65.60	D						718 - 718 -			
							65.78 65.85	-39.52 -39.59		Stiff pale grey CLAY Firm / stiff, brownish grey, finely lam with sub-rounded cobbles of grey lin locally friable and broken up in situ		66
							66.48	-40.22		Firm grey, fine sandy CLAY, with 10 ^c gravel	% angular	1
	6	66.95 - 67.05 D		66.85	-40.59		Firm, pale creamy grey, fine grained (recovery 80%)	sandy CLAY	67			
							67.65	-41.39		Firm, grey / creamy grey fine sandy laminated and banded texture with s of creamy white, soft weather limest	mall clasts	68
	6	8.40 - 68.45	D				60.45	40.00				69
							69.15	-42.89		BOULDER of strong, fresh pale grey grained Limestone	, fine	
							69.89	-43.63				

Ke	yneti						R	ota	ry C	Core Log	Borehole N BH03 Sheet 8 of	3
Projec	t Name	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Hole Typ	
ocati	on:	Galway							Level:	26.26	Scale 1:50	
Client	:	Galway Co	ounty (Counci					Dates:	13/11/2015 - 09/12/2015	Logged E Dave Blan	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		70.40 - 70.50 70.75 - 70.85	D							Firm, dark brown / grey, laminated (boulders of light grey limestone	CLAY, with	71
							72.98 73.95	-46.72 -47.69		Soft / firm, grey / brown fine sandy of angular fine to medium grained lime and cobbles Loose. light grey / brown medium g with bands of soft brown clay (Reco	estone gravel	73
							75.00	-48.74		BOULDER of strong, fresh, pale gre		75
							76.14 76.35 76.42	-49.88 -50.09 -50.16	MK Mk	Firm dark brown organic CLAY, min grained gravel Soft dark brown organic CLAY - ver density Soft light brown / grey, gravelly CLA coarse angular gravel and occasion poor recovery of clay but all cobbles have a clay coating	y light / low Y, 50 -60% all cobbles.	76
							79.10 79.54	-52.84 -53.28		BOULDER of strong light grey limes Soft / firm grey brown sandy CLAY,		78
										angular limestone gravel / cobbles	WILL SUD-	80
Rema	rks									Continued on next sheet		

Keyneti						R	ota	ry C	Core Log	BH03 Sheet 9 of 11	
Project Name	Lackagh Ground Ir	Quarry F	Prelimir tion	nary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Hole Type RC	
Location:	Galway							Level:	26.26	Scale 1:50	
Client:	Galway C	County C	ouncil					Dates:	13/11/2015 - 09/12/2015	Logged By Dave Blaney	
Well Water Strikes	Depth (m)	Type / FI		SCR F	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
Remarks						85.55	-59.29	The state of the s	Loose coarse gravelly COBBLES of limestone. evidence of reworking by the continued on next sheet. Continued on next sheet.	sy the bit 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33

All angles measured relative to core normal

										Borehole N	lo.
						R	ota	rv C	Core Log	вноз	3
Keynetix								. ,	3 - 3	Sheet 10 of	11
Project Name:	Lackagh Ground Ir	Quarry nvestiga	Prelimi ation	inary		oject No. ckagh Qu	arry	Co-ords:	530023.82 - 728382.57	Hole Typ RC	е
Location:	Galway				- '			Level:	26.26	Scale 1:50	
Client:	Galway C	County (Council					Dates:	13/11/2015 - 09/12/2015	Logged E Dave Blan	
Wall Water	Depth	Туре		Coring	J	Depth	Level				
Well Strikes	(m)	/FI	TCR	SCR		(m)	(m)	Legend	Stratum Description		
								Incorrect incorrect incorrect key key key			
								Incorrect incorrect incorrect key key key key			
								incorrect incorrect incorrect key key key			
								incorrect incorrect incorrect key key key			
								key key key Incorrect incorrect incorrec			91 —
								key key key Incorrect incorrect incorrect			
								key key key Incorrect incorrect			-
								key key key Incorrect incorrect			
								key key key Incorrect incorrect incorrec			
								Incorrect incorrect incorrect			92 —
								incorrect incorrect incorrect key key key			-
								incorrect incorrect incorrect key key key			
								incorrect incorrect incorrect key key key			-
								incorrect incorrect incorrect key key key			
								key key key			93 —
								key key key incorrect incorrect incorrect			
								key key key Incorrect incorrect incorrect			
								key key key Incorrect incorrect			_
								key key key Incorrect incorrect			_
								key key key Incorrect incorrect			94 _
								key key key Incorrect incorrect			-
								incorrect incorrect incorrect key key key			-
								incorrect incorrect incorrect key key key			
								incorrect incorrect incorrect key key key			=
								incorrect incorrect incorrect key key key			95 —
								incorrect incorrect incorrect key key key			
								incorrect incorrect incorrect key key key			-
								incorrect incorrect incorrect key key key			-
								incorrect incorrect incorrect key key key incorrect incorrect incorrect			06 -
								key key key Incorrect incorrect incorrec			96 —
								key key key Incorrect incorrect			-
								key key key Incorrect incorrect			=
								key key key Incorrect incorrect			=
								key key key incorrect incorrect key key key			97 —
								incorrect incorrect incorrect key key key			=
								incorrect incorrect incorrect key key key			=
								incorrect incorrect incorrect key key key			=
								incorrect incorrect incorrect key key key			=
								incorrect incorrect incorrect key key key			98 —
								incorrect incorrect incorrect key key key			=
								incorrect incorrect key key key incorrect incorrect			=
								key key key Incorrect incorrect incorrect			7
								key key key Incorrect incorrect incorrect			-
								key key key incorrect incorrect incorrec			99 _
								key key key Incorrect incorrect]
								key key key Incorrect incorrect			3
								key key key Incorrect incorrect key key key			=
								key key key incorrect incorrect key key key			=
								,,	Continued on next sheet		100 —
Remarks											

All angles measured relative to core normal

<u></u>										Borehole I	No.
Keynetix	_					R	ota	ry C	Core Log	вно:	
								1		Sheet 11 o	
Project Name:	Lackagh (Ground In			inary		roject No. ackagh Qu	arrv	Co-ords:	530023.82 - 728382.57	Hole Typ RC	pe
Location:	Galway					ionagri qu	urry	Level:	26.26	Scale	
Location.	Galway							Level.	20.20	1:50	
Client:	Galway C	ounty (1		Dates:	13/11/2015 - 09/12/2015	Logged I Dave Bla	
Well Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description		
				00.1				incorrect incorrect incorrect key key key			-
								incorrect incorrect key key key incorrect incorrect			-
								key key key incorrect incorrect key key key			
								incorrect incorrect incorrec key key key incorrect incorrect			101 —
								key key key Incorrect incorrect key key key			
								incorrect incorrect incorrect key key key			_
								key key key incorrect incorrect incorrec			
								key key key incorrect incorrect key key key			02 _
								incorrect incorrect key key key incorrect incorrect			=
								key key key Incorrect incorrec key key key			
								incorrect incorrect incorrect key key key key incorrect incorrect incorrect incorrect.			
								key key key			103 —
								incorrect incorrect incorrect key key key]
								incorrect incorrect incorrect key key key incorrect incorrect incorrect			=
								key key key Incorrect incorrect key key key			104 —
								incorrect incorrect incorrect key key key			04 =
								key key key			1 3
								incorrect incorrect incorrect key key key			
						104.95	-78.69	incorrect incorrect	Strong, grey, fine to medium grained	d, massive	105 -
									LIMESTONE. Discontinuous white of veining dipping at 55 - 65' and up to		
									scatter bioclast debris.		
											=
											106
						107.10	-80.84	Incorrect incorrect incorrect key key key	Rubble of gravel sized pale grey Lir fragments	nestone	107 —
		-				107.50	-81.24	key key key	Strong, fresh pale grey, fine grained	. massive	- -
	107.50 -	7	90	52	52				LIMESTONE. Scattered bioclastic d	ebris,	=
	108.16					400.10	04.55		stylolitic thin argillite partings		108 =
						108.16	-81.90		Soft, dark brown CLAY, with cobbles sub-angular limestone	of angular /	
		1				108.60	-82.34		Strong, fresh, grey medium grained		\dashv \exists
									LIMESTONE. Scattered fine bioclas 109.4m small calcite filled void with		109 —
	108.60 -		100	100	100				crystals of purple fluorite		
	109.90										=
											=
		1				109.90	-83.64		End of borehole at 109.90 m		110 —
Remarks		1		1		1	I	1			_

All angles measured relative to core normal

Kę	ynetix)_					R	ota	ry C	Core Log	Borehole No BH04 Sheet 1 of	1
Projec	t Name:	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530150.78 - 728400.13	Hole Type	
Locati	on:	Galway				1		-	Level:	32.17	Scale 1:25	
Client		Galway Co	ounty (Counci	l				Dates:	11/11/2015 - 12/11/2015	Logged B	
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		0.00 - 1.20		0	0	0				No Recovery sandy gravelly soil		1 —
		1.20 - 1.35		100	0	0	1.20 1.35	30.97		Mid brown, soft CLAY, with fine to m grained, angular, limestone gravel	edium	
		1.35 - 1.50	-	100	0	0	1.50	30.67		Light grey to pale brown soft CLAY Rubble comprising - Strong, Slightly	weathered	
		1.50 - 2.84		37	0	0				pale grey fine to medium grained Li	MESTONE	2 -
		2.84 - 3.36		87	13	0	2.84	29.33		Strong, fresh, pale grey to brownish medium grained LIMESTONE	grey, fine to	3 —
		3.36 - 4.00		100	0	0	3.36	28.81		Strong, fresh, pale grey / brown, fine grained massive LIMESTONE. Brok angular fragments clasts ranging in 0.5cm to 10cm across in a matrix of brown / grey clay between fragment bands up to 10cm thick.	en in chaotic size from firm to stiff	-
		4.00 - 4.20	25	100	0	0	4.00	28.17		Strong, fresh, pale grey / brown, fine grained massive LIMESTONE. two		4 -
		4.20 - 4.45		100	0	0	4.20	27.97		dipping at 25' Planar / Rough, 2. I 85', Planar / Rough coated with grey clay.	Dipping at	
		4.45 - 4.90	9	100	24	24	4.45	27.72		A rubble of Strong, fresh, pale grey to medium grained massive LIMES Strong, fresh, pale grey / brown, find grained massive LIMESTONE. Two sets, 1. dipping at 15 -30' Planar to undulating / Rough, infilled with grey stiff clay with fine grained sand, 2. D	TONE. to medium fracture slightly //brown grey	- - - - - - - - - - - - - - - - - - -
	rke						7.00	_1.21		Planar / Rough Continued on next sheet	/	5 —

	<u></u>										Borehole N	0.
Kę	ynetix	L					R	ota	ry (Core Log	BH04 Sheet 2 of	
Projec	t Name:	Lackagh C			inary		oject No. ckagh Qu	arn/	Co-ords:	530150.78 - 728400.13	Hole Type	
Location	on:	Galway	voolige	20011		La	ckagii Qu	апу	Level:	32.17	Scale 1:25	
Client:		Galway Co	ounty (Council					Dates:	11/11/2015 - 12/11/2015	Logged B	-
Mall	Water	Depth	Туре		Coring]	Depth	Level	Logond	Stratum Description	Dave Bland	у
Well	Strikes	(m)	/FI	TCR	SCR	RQD	(m)	(m)	Legend	Stratum Description		
		4.90 - 5.95	10	100	10	10				Strong, fresh, pale grey / brown, fingrained massive LIMESTONE. Etch horizontal stylolites. Two fracture se spaced, dipping at 15-25' Planar to undulating / Rough, coated with ligh grey clay and fine sand, 2. Dipping Planar -undulating/ Rough coated w brown clay and fine grained sand.	ned, sub- ets, 1. Closely slightly at brown / at 70 - 90',	
		5.95 - 6.20		88	0	0	5.95 6.20	26.22 25.97		Rubble of Strong, fresh, pale grey / to medium grained massive LIMES Fragments angular and 1 - 7cm acr Strong, fresh, pale grey / brown, fingrained massive LIMESTONE Slig stylolites. two fracture sets, 1. dippir	TONE. oss. e to medium phtly etched	6 —
		6.20 - 7.30	8	100	0	0				Planar / Rough,, grey clay infill 2. D 90', Planar - undulating / Rough coa grey / brown clay.	ipping at 70 -	7 —
	_	7.30 - 7.53	2	100	100	70	7.30	24.87		Strong, fresh, pale grey / brown, fing grained massive LIMESTONE. One dipping at 10' Planar / Rough,		-
	-	7.53 - 7.80	7	100	0	0	7.53	24.64		Strong, fresh, pale grey / brown, fingrained massive LIMESTONE. Substylolites. 3 - 10cm apart. One fracti	-horizontal	-
		7.80 - 8.60	3	100	93	93	7.80	24.37		dipping at 70 - 90' Undulating / Rou clay fill - aperture width up to 2mm Strong, fresh, pale grey / brown, fing grained massive LIMESTONE. Sub well developed stylolites two fractur dipping at 5 - 10' Planar / Rough, 2.	gh, brown e to medium horizontal, e sets, 1.	8 —
		8.60 - 11.36	5	100	13	13	8.60	23.57		Strong, fresh, pale grey / brown, fingrained massive LIMESTONE. Substylolites 10-20cm apart. Locally devertical white calcite veinlets at 9.7 fracture sets, 1. dipping at 10 - 25' L Planar / Rough, locally developed liclay and fine grained sand, 2. Dippi Planar / Rough coated / infilled with brown clay. 3. Locally developed (bg 97m), dipping at 85' Planar / Rough hairline white calcite veinlets	o horizontal veloped, sub 7m. Three Jndulating to ght brown ng at 70 - 90, with grey / etween 9.4 -	9 —

Ké	ynetik						R	ota	ry C	Core Log	Borehole N	
Projec	t Name	Lackagh C Ground Inv	Quarry vestiga	Prelim ation	inary		oject No. ckagh Qu		Co-ords:	530150.78 - 728400.13 32.17	Sheet 3 of Hole Type RC Scale	
			aunty (Council					1		1:25 Logged B	Ву
Client		Galway Co			Coring				Dates:	11/11/2015 - 12/11/2015	Dave Blan	еу
Well	Water Strikes	Depth (m)	Type / FI	TCR		RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		11.36 - 12.50	8	100	72	66	11.36	20.81		Strong, fresh, grey, fine to medium of massive LIMESTONE. two fracture dipping at 5-15' Planar / Rough, loca developed thin clay light brown coate Dipping at 55', Planar / Rough coate grey calcite. Strong, fresh, grey / pale grey, fine to grained massive LIMESTONE. Substylolites., minor fine bioclastic debrif racture set dipping at 10' Planar / Rough coate grey.	sets, 1. ally ing, 2. d with white o medium horizontal s. One	11
		12.50 - 15.86	1	100	100	100						14 -
Rema	rko									Continued on next sheet		15 —

Kę	ynetix						R	ota	ry C	Core Log	Borehole N BH04 Sheet 4 of	.
Projec	t Name	Lackagh C			inary		oject No. ckagh Qu	arry	Co-ords:	530150.78 - 728400.13	Hole Type	
Locati	on:	Galway						·	Level:	32.17	Scale 1:25	
Client:	:	Galway Co	ounty (Council	İ				Dates:	11/11/2015 - 12/11/2015	Logged B Dave Blan	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description	1	
							15.86	16.31		Strong, fresh, grey, slightly mottled, medium grained, massive LIMESTO fracture sets, 1. dipping at 10-25' ur Rough, Grey/brown to orange-brow	ONE. Two ndulating /	16
				41				coating fracture surfaces. and local fractures - aperture up to 2mm thick at 60 - 70', Planar / Rough very min coating.	ly infilling k. 2. Dipping	17 —		
		17.74 - 18.40	0	100	100	100	17.74	14.43		Strong, fresh, pale grey / grey, sligh fine to medium grained, massive Lll 5mm wide calcite vein dipping at 85	MESTONE.	18 —
		18.40 - 18.50		100	0	0	18.40 18.50	13.77 13.67		Very soft, dark bluish grey CLAY]
		18.50 - 18.60 18.60 - 19.36	1	100	100	100	18.60	13.57		Medium strength, fresh, faintly lamin MUDSTONE. Disseminated, sub m scale blebs of crystalline pyrite. Bashas a wavy / undulating nature. Strong, fresh, grey / dark grey, fine grained, massive LIMESTONE. Faintraclastic texture very irregular sangular, centimetric scale clasts in a fine grained matrix. Chaotic networ stylolitic partings - incipient random fracturing. One fracture set. dipping	m to mm sal contact to medium int brecciated shaped a dark grey k of shaley ly orientated	19 —
		19.36 - 19.55		79	0	0	19.36	12.81		Rough, no infill Dark grey, soft CLAY with friable an		∤ ∄
		19.55 - 19.95	18	100	58	40	19.55 19.55	12.62		tabular grey limestone fragments 2 Strong, fresh, grey / dark grey, sligh fine to medium grained, massive LII Brecciated texture, angular / irregul intraclasts 0.5 - 3cm across, in a da grained matrix (micrite), clasts are r	- 5mm across itly mottled, MESTONE. arly shaped rk grey fine	-
Rema										Continued on next sheet		20 —

Project Name: Lankagh Quarry Preliminary Co-ords: 530150.78 - 728400.13 Sheet 5 47 RC Scale 125												Borehole N	0.
Project Name: Lackagh Quarry Preliminary Co-ords: 530150.78 - 728400.13 Hole Type RC	_							R	ota	rv (Core Log	BH04	
Coordinate Coo	Keyn	netix						• •	O LO	. , –	70.0 L 09	Sheet 5 of	7
Color Colo	Project N	Jame.				inary		-		Co-ords:	530150 78 - 728400 13	• • • • • • • • • • • • • • • • • • • •	е
Location: Galway County Council Date: Level: 32.17	i roject i	turrio.	Ground Inv	vestiga	ation		La	ckagh Qu	arry	00 0100.	720400.10		
Cilent: Galway County Council Well Water Month Strikes Depth (m) Type Coring (m) Depth (m) Tork SCR RQD (m) Coring (m) Legend (m) Stratum Description Legend (m) Stratum Description Legend (m) Stratum Description Legend (m) Legend (m)	Location:	:	Galway							Level:	32.17		
Well Water Strikes Depth (m) /FI To SCR RQD (m) Level (m) Legend Stratum Description 19.95 - 20.78 0 100 100 100 100 100 100 100 100 100	Client		Calvay Ca		20.000	1				Detec	44 44 4004	_	y
Strikes	Client:		Galway Co	bunity C	Journel			T	1	Dates:	11/11/2015 - 12/11/2015	Dave Blan	ey
19.95 - 20.78 0 10	• V/V/ΔII I					_	1			Legend	Stratum Description		
Pinian / Rough, minor graybrow day, Strong, firesh, grey, slightly mottled, fire to medium grained, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory and stylic librory and stylic librory. Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory and stylic librory. Strong, fresh, grey, fine to medium grained, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory and stylic librory. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory and stylic librory. Strong, fresh, grey / palle grey, slightly mottled, fine to medium grained, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory. Strong, fresh, grey / palle grey, slightly mottled, fine to medium grained, massive LIMESTONE. Inclipient brecola texture. Such-protocol stylic librory. Strong, fresh, grey / palle grey, slightly mottled, fine to medium grained, massive LIMESTONE. Incline to medium grained, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle grey, slightly mottled, massive LIMESTONE. Strong, fresh, grey / palle gr	Sti	likes	(111)	/ FI	TCR	SCR	RQD	(111)	(111)		supported One fracture set dinning	at 40 45'	
20.78 - 21.64			19.95 - 20.78	0	100	100	100				Planar / Rough, minor grey/brown cl Strong, fresh, grey, slightly mottled, medium grained, massive LIMESTC Brecciated texture, sub-angular, irre shaped, intraclasts in a dark grey fir	ay/ fine to NE. gular	
Strong, fresh, pale grey, and discontinuous white calcite veins. Three fracture sets, 1. dipping at 70 - 75 Planar / Rough, 3. Dipping at 70 - 75 Planar / Rough minor orange brown clay particulary over top 20cm 22.60 9.57 Strong, fresh, pale grey / brownish grey, fine to medium grained, massive LIMESTONE. Scattered small blockasts and an occasional larger (2. 3cm) coral figment. Sub-horizontal styloilites 20 - 30cm apart. One fracture set dipping at 5-10 Planar / Rough, minor pale brown sandy clay coating.			20.78 - 21.64	2	100	100	100	20.78	11.39		massive LIMESTONE. Incipient bree Sub-horizontal stylolites 10 - 15cm a scattered bioclasts. One fracture set	ccia texture. apart, minor	21 —
22.60 - 26.50 2 100 100 99			21.64 - 22.60	9	96	57	57				fine to medium grained, massive LIN Sub-horizontal stylolites and very sr discontinuous white calcite veins. Th sets, 1. dipping at 5-10' Planar to sl stepped / Rough, 2. Dipping at 30 - Rough, 3. Dipping at 70 - 75' Planar minor orange brown clay particulary	MESTONE. nall nree fracture ightly 40', Planar / / Rough	22 —
Continued on next sheet			22.60 - 26.50	2	100	100	99	22.60	9.57		medium grained, massive LIMESTC Scattered small bioclasts and an oc- larger (2- 3cm) coral fragment. Sub- stylolites 20 - 30cm apart. One fract dipping at 5-10' Planar / Rough, min	NÉ. casional horizontal ure set	

Ke	ynetix						R	ota	ry C	Core Log	Borehole N BH04 Sheet 6 of	4
Projec	t Name:	Lackagh C Ground Inv			inary		oject No. ckagh Qu	arry	Co-ords:	530150.78 - 728400.13	Hole Typ RC	е
_ocati	on:	Galway							Level:	32.17	Scale 1:25	
Client		Galway Co	ounty (Council					Dates:	11/11/2015 - 12/11/2015	Logged E Dave Blan	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring		Depth (m)	Level (m)	Legend	Stratum Description	•	
		26.50 - 27.20 27.20 - 28.95	9	100	46	20	26.50	4.97		Strong, fresh, pale grey / brownish; medium grained, massive LIMESTO fracture sets, 1. dipping at 5-10 Plano infill. 2. Dipping at 55-60', Planar very minor yellowish brown clay coast strong, fresh, pale grey, fine to memassive LIMESTONE. Two fracture closely / medium spaced, dipping a Planar / Rough, Grey/brown to orar clay coating fracture surfaces. and I fractures - aperture up to 2mm thick at 45", Planar / Rough	DNE. Two nar / Rough, r / Rough, ating. dium grained, e sets, 1. t 5-10' nge-brown locally infilling	26 -
	-	28.95 - 29.32		0	0	0	28.95	3.22	moorrect incorrect incorrect key key key key incorrect incorrect incorrect incorrect key key key incorrect	CAVITY. Contacts display evidence dissolution, pitting etc thin coating yellowish brown clay		29
		29.32 - 30.20	3	100	100	100	29.32	2.85		Strong, fresh, pale grey, fine to med massive LIMESTONE. Sub-horizon 10 - 20cm apart. One fracture set, 1 spaced, dipping at 0-5' Planar / Rou	tal stylolites L. Closely	
• • • •										Continued on next sheet		30 -

Project Name Location: Client: Well Water Strikes	tix	<u> </u>				R	ota	ry C	Core Log	Borehole N BH04 Sheet 7 of	Ļ
Client: Water		Lackagh C	uarry Prelin	ninary		oject No. ckagh Qua	arrv	Co-ords:	530150.78 - 728400.13	Hole Typ RC	
Water	Galway					<u> </u>		Level:	32.17	Scale 1:25	
	Galway C	Galway Co	ounty Counc	cil				Dates:	11/11/2015 - 12/11/2015	Logged B Dave Blan	
			Type / TCR	Coring		Depth (m)	Level (m)	Legend	Stratum Description	•	
			101		1100						
	30.20 - 30.40	30.20 - 30.40	100	0	0	30.20	1.97		Very soft light brown / grey CLAY w pale brown sand 5cm thick at top. 0		
	30.40 - 33.72	30.40 - 33.72	2 100	100	98	30.40	1.77		Strong, fresh, pale grey, fine to med massive LIMESTONE. Sub-horizon One fracture sets dipping at 5-20' F Rough, Medium spaced.	ital stylolites.	31 -
****	33.72 - 34.30	33.72 - 34.30	7 100	0	0	33.72 34.20	-1.55 -2.03		Strong, fresh, pale grey, fine to med massive LIMESTONE. Sub-horizon Two fracture sets 1. dipping at 5-10 Rough, no infill. 2. dipping at 75-85 Rough. Strong, fresh, pale grey, fine to med	ital stylolites. ' Planar / ', Planar /	34 -
	34.30 - 35.00	34.30 - 35.00	1 100	100	100				massive LIMESTONE. Minor sub-t stylolites. One fracture sets dipping Planar to undulating / Rough, no int	norizontal at 250'	

											Borehole No	0.
Ke	ynetix	L					R	ota	ry C	Core Log	BH05	
Projec	t Name:	Lackagh (Ground In			inary		oject No.	arrv	Co-ords:	530186.65 - 728378.11	Sheet 1 of 9 Hole Type RC	
Locati	on:	Galway					onagn aa		Level:	34.14	Scale 1:25	
Client		Galway C	ounty (Council	1				Dates:	06/11/2015 - 10/11/2015	Logged B	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
				10.1		T C C	0.40	33.74		Overburden minor cobbles recovered Strong, pale grey, medium grained, LIMESTONE. Joint set dipping at 5 Rough, no infill. Joint set dipping at	massive - 10' Planar /	-
		0.40 - 0.95	13	100	0	0	0.05	20.40		Planar / Rough, grey calcite coating		-
		0.95 - 1.17	0	100	100	100	0.95	33.19		Strong, pale grey, medium grained, pellety LIMESTONE	massive	1 -
	-	1.17 - 1.50	12	100	0	0	1.17	32.97		Strong, pale grey, medium grained, LIMESTONE: Joints dipping at 5 - 1 slightly undulating / Rough,, very clo spaced,	0' Planar -	
		1.50 - 2.30	11	100	0	0	1.50	32.64		Strong pale grey / grey, medium gramassive LIMESTONE. Joints dippin Planar / Rough. Set of two conjuga dipping at 85 - 90' with strike angle of 110 / 70' Planar to Slightly undulated	g at 5 - 10' te joints between sets	2 -
		2.30 - 3.27	11	100	32	32	2.30	31.84		Strong, pale grey, fine to medium gr slightly bioclastic, massive LIMESTo stylolites, Very closely to closely spa fractures dipping at 5 - 15', Planar to undulating / Rough.	ONE. Minor	3 —
		3.27 - 5.80	8	99	0	0	3.27	30.87		Strong, grey / pale grey, medium gramassive LIMESTONE. closely spat dipping at 5 - 15', Planar to slightly to Rough. Fracture set dipping at 85' p	ced fracture undulating /	4—
Domo										Continued on next sheet		5 —

Project							R	ota	ry C	Core Log	BH05 Sheet 2 of	
ocatio	Name:	Lackagh C			inary	l l	oject No. ckagh Qu	arrv	Co-ords:	530186.65 - 728378.11	Hole Typ RC	
	n:	Galway					<u> </u>	<u> </u>	Level:	34.14	Scale 1:25	
Client:		Galway Co	ounty (Council					Dates:	06/11/2015 - 10/11/2015	Logged B Dave Blan	•
	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		5.80 - 8.00	6	100	0	0	5.80	28.34		Strong, pale grey, medium grained, massive LIMESTONE. fine grained bioclastic debris, Sub horizontal styl closely to closely spaced fractures of 20', Planar to slightly undulating / R fine grained grey sand infill. Axial paconjugate jointing dipping at 85 - 90 120 / 60 relative to each other. mino coating	scattered olites. Very lipping at 5 - ough, minor trallel ' striking	6
		8.00 - 8.68	1	91	91	91	8.00	26.14		Strong, pale grey, medium grained, LIMESTONE. fine grained scattered debris, Sub horizontal stylolites.	massive d bioclastic	8
	_	8.68 - 9.50	11	100	88	37	8.68	25.46		Strong, pale grey, fine grained, mas LIMESTONE. Sub horizontal stylol Fractures dipping at 5 - 10', Planar / Fractures dipping at 45' Planar - slig undulating / Rough	ites. 'Rough,	9
		9.50 - 10.25	0	100	100	100	9.50	24.64		Strong, pale grey, fine grained, mas LIMESTONE. fine, sub horizontal s spaced 5 - 10cm.	sive tylolites,	-10

Keynet	×					R	ota	ry C	Core Log	Borehole N BH05 Sheet 3 of	5
Project Nam	e: Lackagh C			inary	l l	oject No. ckagh Qu	arry	Co-ords:	530186.65 - 728378.11	Hole Type RC	е
Location:	Galway							Level:	34.14	Scale 1:25	
Client:	Galway Co	ounty (Counci	I				Dates:	06/11/2015 - 10/11/2015	Logged B Dave Blan	
Well Wate Strike		Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
	10.25 - 11.34 11.34 - 12.62	13	100	0 100	78	10.25	23.89		Strong, pale grey, fine grained, mas LIMESTONE. Sub horizontal styloli fractures sets 1. dipping at 5 - 10', F Rough, no infill; 2. dipping at 45 - 5 slightly undulating / Rough, fine san fracture surfaces. 3. dipping at 85 - slightly undulating / Rough cross-cu other fracture sets. Strong, pale grey, fine to medium g massive LIMESTONE. Sub horizor Two fracture sets 1. dipping at 5 - 1 slightly undulating / Rough, 2. dippi 90', Planar / Rough very minor iron	tes. Three Planar / O' planar to d coating 90', Planar to titting the rained, tal stylolites. O', Planar to ing at 85 -	11
	12.62 - 13.27	15	100	0	0	12.62	21.52		Strong, pale grey / grey, fine / mediumassive LIMESTONE. Two fracture Close to very closely spaced dippin Planar / Rough; 2. dipping at 70 - 8 Rough	es sets 1. g at 5 - 20',	13 —
	13.27 - 15.04	4	100	100	96	13.27	20.87		Strong, grey, fine / medium grained, LIMESTONE. Very small scattered Occasional sub-horizontal stylolites elongate calcite filled "Birdseyes", evertical long axis 5 - 10mm long and wide. Two fracture sets 1. Medium dipping at 5 - 15', Planar / Rough; 2 spaced, dipping at 55', Plana	bioclasts, . Small longate sub d 0.5mm spaced 2. Widely	14 —

											Borehole N	0.
Ke	yneti						R	ota	ry C	Core Log	BH05	
Projec	t Name	Lackagh C			inary		oject No.		Co-ords:	530186.65 - 728378.11	Sheet 4 of Hole Type	
		Ground In	vestiga	ation		La	ckagh Qu	arry	oo ordo.	72070.11	RC Scale	
Locati	on:	Galway							Level:	34.14	1:25	
Client		Galway Co	ounty (Council	l		ı		Dates:	06/11/2015 - 10/11/2015	Logged B Dave Bland	•
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		15.04 - 15.44	18	100	100	0	15.04	19.10		Strong, grey, fine / medium grained, LIMESTONE. Very small scattered a large 1cm dia. gastropod, Occasi	bioclasts and	-
		13.04 - 13.44	10	100	100		15.44	18.70		horizontal stylolites. Two fracture se to very closely spaced dipping at 5 - Planar / Rough; 2. Dipping at 85', P	ts 1. Closely · 15',	-
										slightly undulating / Rough Strong, grey, fine / medium grained, LIMESTONE. Occasional sub-horiz stylolites. Faint intraclasts centimetr One fracture set dipping at 10', Plan	contal ic scale.	-
		15.44 - 16.82	2		100	100						16
		16.82 - 18.40	8	100	100	63	16.82	17.32		Strong, grey, fine / medium grained, LIMESTONE. Fine grained scattere debris. Locally developed intraclasts rounded to sub-rounded 1 - 2cm in fracture sets 1. Medium spaced dipp 15', Planar / Rough, minor associat Sub-vertical - undulating dipping at a Planar / Rough	ed bioclastic s, clasts are dia. Two bing at 10 - ed rubble; 2.	17 -
							18.40	15.74				18 -
		18.40 - 19.26	7	100	95	60				Strong, grey, fine grained, massive I Thin band of coarse brachiopod she 18.82m. Two fracture sets 1. Mediu dipping at 10', Planar / Rough, minc clay coating the fracture surfaces; 2 80-85', Planar / Rough associated w calcite veinlets	ells at um spaced, or light brown . Dipping at	19 —
		19.26 - 19.95	3	100	100	100	19.26	14.88		Strong, pale grey, fine / medium gra massive, pellety LIMESTONE. Fine bioclasts, Occasional sub-horizontal Fracture set dipping at 5 - 10', Plana no infill.	scattered stylolites.	-
							19.95	14.19				20 -
Rema	rke									Continued on next sheet		

											Borehole No.
Kę	ynetix						R	ota	ry C	Core Log	BH05
Projec	t Name	Lackagh C			inary		oject No. ckagh Qu	arn/	Co-ords:	530186.65 - 728378.11	Sheet 5 of 9 Hole Type RC
Location	on:	Galway	vestige	20011		La	ckagii Qu	arry	Level:	34.14	Scale 1:25
Client:		Galway Co	ounty (Council					Dates:	06/11/2015 - 10/11/2015	Logged By Dave Blaney
Well	Water Strikes	Depth	Туре		Corino	1	Depth	Level	Legend	Stratum Description	
	Strikes	(m)	/FI	TCR		RQD	(m)	(m)		Strong, grey, fine / medium grained,	
		19.95 - 20.20 20.20 - 20.30	0	100	60	0	20.20	13.94	Incorrect incorrect incorrect key key key	LIMESTONE. Two fracture sets 1. (spaced dipping at 5 - 10', Planar / F Dipping at 45', Planar / Rough light l	Rough; 2.
		20.30 - 20.45	0	100	100	100	20.30	13.84		infill, up to 2mm thick. Core loss	
		20.45 - 20.75	20	100	0	0	20.40	10.00		Very stiff, light brown / orange brown Finely laminated. Strong, grey, fine / medium grained,	/
							20.75	13.39		LIMESTONE. Small black millimetri blebs- burrowing? Three fracture se	c scale ets 1. Very
		20.75 - 21.50	9	100	35	24	21.50	12.64		closely spaced, dipping at 5', Planar Dipping at 80', Planar / Rough with a coating fracture surfaces. 3. dipping undulating / rough crosscut by set 2 Strong, grey pale grey mottled, fine grained, massive, pellety LIMESTOI Intraclastic texture sub-angular to suclasts 1 - 2cm dia. in a darker grey f matrix. Two fracture sets 1. Dipping	white calcite at 70', 21 // medium NE. ub-rounded ine grained at 10 - 15',
		21.50 - 22.40	4	100	94	94	2			Planar / Rough; 2. Dipping at 60', P undulating / Rough, fracture surface light brown clay Strong, grey, medium grained, mass LIMESTONE. Very small scattered with occasional coarse brachiopods horizontal stylolites. Two fracture se spaced dipping at 10', Planar / Rou Medium spaced, dipping at 35', Plar	s coated with sive bioclasts . Minor sub- ts 1. Medium gh; 2.
		22.40 - 23.73	5	100	16	16	22.40	11.74		Strong, pale grey, fine / medium gramassive LIMESTONE. Occasional horizontal stylolites with minor oxida hairline, steeply dipping white calcite Two fracture sets 1. Medium spacec - 10', Planar / Rough; 2. Dipping at Planar / Rough, light brown clay coasurfaces, locally developed fracture 1mm thick	sub- tion. Thin e veinlets. d dipping at 5 80-85', titing fracture infill up to
		23.73 - 25.55	2	100	93	93	20.10	10.41		Strong, grey / grey brown, fine / mec massive LIMESTONE. Occasional i horizontal stylolites. Minor scatter fir debris. Two fracture sets 1. Medium dipping at 5 - 10', Planar / Rough; 2 60', Planar / Rough	faint, sub- ne bioclastic n spaced 24

Ke	yneti						R	ota	ry C	Core Log	Borehole N BH05	5
Projec	t Name	Lackagh C	Quarry vestiga	Prelim ation	inary		oject No. ckagh Qu	arry	Co-ords:	530186.65 - 728378.11	Sheet 6 of Hole Type RC	
Locati	on:	Galway							Level:	34.14	Scale 1:25	
Client		Galway Co	ounty (Counci	l				Dates:	06/11/2015 - 10/11/2015	Logged B Dave Blan	-
Well	Water Strikes		Type / FI	TCR	Coring SCR	RQD	Depth (m)	Level (m)	Legend	Stratum Description		
		25.55 - 25.85 25.85 - 26.60 26.60 - 27.65	3	100	80 91 37	80 91 37	25.55 25.85 26.60 27.65	8.59 8.29 7.54 6.49		Strong, grey / brownish grey, fine / r grained, massive LIMESTONE. Ver scattered bioclasts, Two fractures at 10 - 20', Planar / Rough; 2. Dippi Planar / Rough no infill Strong, grey, fine / medium grained, LIMESTONE. Slightly oxidised substylolites. Fracture set dipping at 5 - Rough; no infill Strong, pale grey / brownish grey, figrained, massive LIMESTONE. Oc shelled bioclasts - brachiopod, Thre sets 1. Dipping at 10 - 20', Planar / Close spaced, dipping at 55 - 60', P Rough; 3. Dipping at 85', Planar / R white calcite coating fracture surface. Strong, pale grey / brownish grey, figrained, massive LIMESTONE. Oc sub-horizontal stylolites. Fracture s 5', Planar / Rough, no infill Strong, pale grey / brownish grey, figrained, massive LIMESTONE. This sets 1. Close spaced dipping at 5 - Rough; 2. Widely spaced, dipping a Planar / Rough, at 31.7m light brow 1 mm thick; 3. Axial parallel - 90', crothe other fracture sets. Planar / roug coating of white calcite.	ny small ets 1. dipping ng at 50', massive -horizontal 10', Planar / ne / medium casional thick e fracture Rough; 2. lanar / ough minor es ne / medium casional et dipping at 26 27 27	
										Continued on next sheet		30 -

											Borehole N	lo.
Ke	ynetix	_					R	ota	ry C	Core Log	BH05	;
	et Name:	Lackagh C	uarry vestiga	Prelim ation	inary		oject No. ckagh Qu		Co-ords:	530186.65 - 728378.11	Sheet 7 of Hole Typ RC	
Locati	on:	Galway					<u> </u>	<u> </u>	Level:	34.14	Scale 1:25	
Client	:	Galway Co	ounty (Counci	I				Dates:	06/11/2015 - 10/11/2015	Logged B	
Well	Water Strikes	Depth (m)	Type / FI		Coring	1	Depth (m)	Level (m)	Legend	Stratum Description		
		28.03 - 32.03	3	100	0	0						31 —
		32.03 - 34.72	4	100	100	97	32.03	2.11		Strong, pale grey / brownish grey, fi grained, massive LIMESTONE. Ochorizontal stylolites. One fracture se Medium spaced, dipping at 5 - 20', I Rough, no infill.	et, close to	33 - 33 - 34 - 34 - 34 - 34 - 34 - 34 -
							34.72	-0.58		Strong, grey . brownish grey, fine / r grained, massive LIMESTONE. Ve scattered bioclasts, and a rare thick	ry small	35 —
Rema	rks			_	_			_				_

											Borehole N	0.
Ké	vnetiv						R	ota	ry C	Core Log	BH05	;
											Sheet 8 of	
Projec	t Name	Lackagh C Ground In	Quarry vestiga	Prelim ation	inary		oject No. ckagh Qu	arrv	Co-ords:	530186.65 - 728378.11	Hole Type RC	е
4:							onagii qu	uny	11	24.44	Scale	
Locati	on:	Galway							Level:	34.14	1:25	
Client		Galway Co	ounty (Counci	l				Dates:	06/11/2015 - 10/11/2015	Logged B Dave Blan	
Well	Water Strikes	Depth (m)	Type / FI		Coring	1	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	(m) 34.72 - 37.20	6	100	SCR 4	RQD 4	(m)	(III)		brachiopod . Occasional sub-horizor. Three fracture sets 1. Close spaced 10 - 20', Planar / Rough; 2. Very widipping at 35-40', Planar / Rough; 3 Undulating / rough, fracture surface light brown clay. Crosscuts other fra	ntal stylolites. I dipping at dely spaced, . 75 - 85' coated with	36 —
		37.20 - 38.00	0	100	100	100	37.20	-3.06		Strong, grey / pale grey, fine / mediumassive LIMESTONE.	um grained,	
		38.00 - 40.00		100	0	0	38.00	-3.86		Strong, pale grey, fine to medium gr massive LIMESTONE. Occasional s fracture sets. 1. dipping at 5', planar dipping at 85-90' Planar / rough coa partially infilled by light brown clay	stylolites, two / rough , 2.	38
	<u> </u>		L							Continued on next sheet		40 —
Rema	rks											

						_			_		Borehole N	0.
	_					R	ota	rv (Core Log		BH05	,
Keynetix								,	.		Sheet 9 of	9
Project Name:	Lackagh (Ground Ir	Quarry vestiga	Prelimi ation	inary		oject No. ckagh Qu	arry	Co-ords:	530186.65 - 728378.11		Hole Type RC	е
Location:	Galway				•			Level:	34.14		Scale 1:25	
Client:	Galway C	ounty (Council					Dates:	06/11/2015 - 10/11/2015		Logged B Dave Bland	y ey
Water	Depth	Туре	(Coring		Depth	Level	ļI	0			
Well Strikes	(m)	/ FI	TCR	SCR		(m)	(m)	Legend	Stratum Descrip	tion		-
						40.30	-6.16		End of borehole at 40.	30 m		41 42 43 43
Remarks												44 —

_										Borehole N	lo.
Keyneti	_					R	ota	ry C	Core Log	ВН06	;
					D-					Sheet 1 of	
Project Name	Lackagh (Ground In	Juarry vestiga	Prelim ation	inary		oject No. ckagh Qu	arrv	Co-ords:	530125.14 - 728383.08	Hole Typ	е
1 4:							,	l accele	20.00	Scale	
Location:	Galway							Level:	30.80	1:50	
Client:	Galway C	ounty (Counci	I				Dates:	10/12/2015 - 18/12/2015	Logged B Dave Blan	-
Well Water Strikes	Depth (m)	Type / FI	TCR	Coring SCR		Depth (m)	Level (m)	Legend	Stratum Description		
						0.10	30.70		TOPSOIL Soft, pale grey, sandy CLAY (Recov	very 35%)	-
						1.05	29.75		Loose grey to dark grey cobbly BOU bioclastic limestone, minor pale gre		1 -
						1.50	29.30		Firm, light yellowish brown, sandy C grained sub-angular cobbles of dark limestone and occasional granite co (recovery 45%)	k grey	2 —
	5.25 - 5.50	С				3.10	27.70		Very stiff , light yellowish brown san coarse gravel / cobbles and occasic of sub-rounded to sub-angular limes minor granite	onal boulders	5 6
	9.95 - 10.20	С				7.91 7.96	22.89 22.84		Firm / stiff light grey CLAY Very stiff, light brown sandy CLAY w light orange oxidation spots / patche gravel / cobbles and occasional bou rounded to sub-angular limestone w granite Continued on next sheet	es. Coarse ulders of sub-	8 - 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10

Ke	ynetix						R	ota	ry C	Core Log	Borehole N	6
Projed	ct Name:	Lackagh C	Quarry vestiga	Prelim ation	inary		oject No.	arrv	Co-ords:	530125.14 - 728383.08	Sheet 2 of Hole Typ RC	
Locat	ion:	Galway						- ,	Level:	30.80	Scale 1:50	
Client	:	Galway Co	ounty (Counci	I				Dates:	10/12/2015 - 18/12/2015	Logged E Dave Blan	-
Well	Water Strikes	Depth (m)	Type / FI	TCR	Coring	RQD	Depth (m)	Level (m)	Legend	Stratum Description	1	
		16.20 - 16.50 16.60 - 16.70 16.70 - 16.80 17.13 - 17.20 18.00 - 18.25 18.25 - 18.35 18.65 - 18.75 18.95 - 19.05					15.20 15.93	15.60 14.87		Loose, medium grained angular clawith small cobbles all coarse fragmwith sticky, soft, dark grey clay Very Stiff dark grey / brown CLAY Very Stiff grey CLAY	ents coated	11 · · · · · · · · · · · · · · · · · ·
Rema		20.00 - 20.25	C							Continued on next sheet		20

											Borehole N	lo.
		_					R	ota	rv C	Core Log	ВН06	6
Kę	ynetix								,	3	Sheet 3 of	5
Projec	t Name	Lackagh C			inary		oject No. ickagh Qu	arrv	Co-ords:	530125.14 - 728383.08	Hole Typ RC	е
Locati	on:	Galway				l			Level:	30.80	Scale 1:50	
Client:		Galway Co	ounty (Council					Dates:	10/12/2015 - 18/12/2015	Logged E Dave Blan	-
	\A/=+==	Danth	T		Coring		Darette	11			Dave blair	
Well	Water Strikes	Depth (m)	Type / FI	TCR	_		Depth (m)	Level (m)	Legend	Stratum Description		
									<u> </u>			_
												1 3
												-
									E- <u>-</u>			21 —
							21.20	9.60		F: 01 AV		
		21.45 - 21.52	D				21.48	9.32		Firm grey CLAY		
		21.52 - 21.60	D				21.40	8.98		Firm / Stiff finely laminated dark bro CLAY		
							21.92	8.88	A 000 000	Firm, dark brown CLAY with 60% ta gravel	bular angular	22 –
										Firm grey fine sandy CLAY with ang limestone gravel and some coarse of		
							22.60	8.20		small boulders Very soft, light grey sandy CLAY wit	h rounded	
							22.84	7.96		gravel Soft, grey sandy CLAY angular grav		23 —
							00.00	7.50				
							23.30	7.50	0.000	Firm / Stiff grey sandy CLAY with su angular matrix supported coarse gra	b-angular /	1 3
							23.60	7.20		cobbles	,	1
										Soft, grey, sandy CLAY with mediun grained, angular gravel and an occa		24 —
										boulder (25cm dia.		-
												1 3
												25 —
							25.50	5.30]
							20.00	0.00		Soft / firm grey / green sandy CLAY angular cobbles and boulders. Som		=
										is washed out and is just coated the boulders	cobbles and	26 —
										200,00]]
												=
							26.65	4.15		Stiff / very stiff, light grey CLAY occa	asional	1 1
									F-0-1	boulder of pale grey limestone		27 —
							27.30	3.50]
							27.00	0.00		Loose, grey / dark grey cobbly GRA occasional boulders of limestone co		=
										very soft brownish grey clay		
									9 9 0			28 —
												1 =
									9 0 0			_
									3,000			29 _
									å ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			
									a . , a . 0			=
									, ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			
									4 2 0 0	Continued on next sheet		30 —
Rema	rks											

Project Name: Lackagh Quarry Preliminary Ground Investigation Location: Galway County Council Project No. Lackagh Quarry Location: Galway County Council Logge Client: Galway County Council Logge Client: Galway County Council Logge Client: Galway County County Council Logge Client: Logge Client: Galway County Council Logge Client: Log	4 of 5 Type C ale 50 ed By Blaney
Project Name: Lackagh Quarry Preliminary Ground Investigation Location: Galway Co-ords: 530125.14 - 728383.08 Hole Report Strikes Galway County Council Dates: 10/12/2015 - 18/12/2015 Legend Stratum Description Sheet Sheet Co-ords: 530125.14 - 728383.08 Hole Report Strikes Sheet Hole Report Strikes Sheet Report Sheet	Type C ale 50 ed By Blaney
Columbia	C ale 50 ed By Blaney
Location: Galway Level: 30.80 Scott / very soft, pale grey / greenish grey bouldery CLAY, cobbles and coarse gravel, clar washed out and just left coating fragments in	ale 50 ed By Blaney
Client: Galway County Council Dates: 10/12/2015 - 18/12/2015 Logg Dave	ed By Blaney
Well Strikes Depth Strikes Depth (m) Type Coring Depth (m) Level (m) Stratum Description Stratum Description Soft / very soft, pale grey / greenish grey bouldery CLAY, cobbles and coarse gravel, clar washed out and just left coating fragments in	Blaney
Well Water Strikes Depth (m) Type / FI TCR SCR RQD Depth (m) Level (m) Legend Stratum Description 30.85 -0.05 Soft / very soft, pale grey / greenish grey bouldery CLAY, cobbles and coarse gravel, clay washed out and just left coating fragments in	
Strikes (m) / FI TCR SCR RQD (m) Legend Stratum Description 30.85 -0.05 Soft / very soft, pale grey / greenish grey bouldery CLAY, cobbles and coarse gravel, clay washed out and just left coating fragments in	, 31 -
bouldery CLAY, cobbles and coarse gravel, clay washed out and just left coating fragments in	, 31
33.20 -2.40 33.50 -2.70 33.70 -2.90 Firm greenish grey (Khaki) CLAY with angular coarse cobbles of pale grey limestone Firm, greenish grey gravelly CLAY, gavel composed of dark grey limestone Pale grey, medium grained, fresh, massively bedded limestone BOULDER Broken up along series of fractures - undulating rough dipping a 70-80' and planar rough dipping at 50-60'. Mind grey clay coating joint surfaces. Loose sub-angular COBBLES coated with soft pale grey clay Soft greenish grey sandy, gravelly CLAY with angular cobbles and small boulders of pale grey / occasionally black limestone	: 🗆
39.10 -8.30 Loose sub-angular COBBLES of very dark grey limestone (Recovery 30%)	38 -
	40 -
Continued on next sheet Remarks	

Keynetix	_			R	ota	ry C	Core Log	Borehole N BH06 Sheet 5 of	5
Project Name:	Lackagh Qua	arry Prelim stigation		Project No. Lackagh Qu	arry	Co-ords:	530125.14 - 728383.08	Hole Typ RC	е
Location:	Galway					Level:	30.80	Scale 1:50	
Client:	Galway Cour	nty Counci	I			Dates:	10/12/2015 - 18/12/2015	Logged B Dave Blan	-
Well Water Strikes	Depth Ty /	ype TCR	SCR RQI	Depth (m)	Level (m)	Legend	Stratum Description	1	-
				44.40	-9.80 -13.60		Loose, coarse gravelly COBBLES, sub-angular with some coated by g clay occasional small boulder BOULDER of strong, fresh, fine / m grained, massively bedded Limesto joint filled with soft, dark grey clay,	reenish grey redium one. 44.8m a	41
				45.00	-14.20	0,00	(Possibly bedrock) End of borehole at 45.00 m	,	45 -
									47 —
									48 —
									49 =
Remarks									50 —

APPENDIX III

			PRO.	JECT	NAM	La	ckagh	h Qua	arry																			REPORT NO:					
					Galwa																							HOLE NO:	BH-01				
			ENG	INEE	R: AR	UP																						LOGGED BY:	Dave Blaney				
=			0					Rou	ghness						Aper	ture				Filling	g			W	eathe	ring							
Depth of Discontinuity (m BGL)	Azimuth	Dip	Non Intact? (NI)		teppe			ndula			Plana		Other	uado A >10 2	Open :: 0			-	Staining	% Soil	% Mineral	Clay	No	S	Mod	High	Сотр			Hole Azimuth	Hole Dip	Frue Azimuth	True Dip
Ā			ž	R	Sm	St	R	Sm	St	R	Sm	St			10 2.	5 0.	5 <0.1	1			0.									_			
5.80		45					Х)			Х					Х					No Invert marked		268	-11.5		
5.95		10								Χ					>			Х					Х					No Invert marked		268	-11.5		
6.10		20						<u> </u>		X					<u> </u>		_	X		<u> </u>			X			1		No Invert marked		268	-11.5		
6.18 6.30		25 65	X							X))			X		1			X			1		No Invert marked No Invert marked		268 268	-11.5 -11.5		
6.90	180	85	^							X					· ·			X					X					No lilvert marked		268	-11.5		
7.08	190	60								Х					<u>,</u>			X					X							268	-11.5		
7.52	165	65						L		Х					· >		1	Х					Х			L	L			268	-11.5		
7.58	165	65								Χ					>			Х					Х							268	-11.5		
7.66	230	70								Х					>			Х					Х							268	-11.5		
7.90	180	55	-		\sqcup		Х	<u> </u>			1-				>		-	X	_	1			X		1		1			268	-11.5		
8.35 8.55	285 210	90 75								X))			X		1			X			1				268 268	-11.5 -11.5		
8.55	135	72	1		H			 	1	X	1				- /			X		+			X			+	+			268	-11.5		
8.83	60	82			H					X					<u> </u>			X		†			X			1	+			268	-11.5		
8.85	150	90					Х								· >	_		Х		1			Х							268	-11.5		
9.35	195	78								Х					>			Х					Х							268	-11.5		
9.67	215	90								Х					>			Х					Χ							268	-11.5		
9.81	130	62						<u> </u>		Х)			Х		<u> </u>			Х							268	-11.5		
9.90	335 330	82								X				-	<u> </u>		_	X		-			X			-	-	<u> </u>		268 268	-11.5 -11.7		
10.17 10.20	180	90 90					Х		+	Х))		-	X	-	1			X			1	-			268	-11.7		
10.71	10	90								Х					,			X					X							268	-11.7		
10.90	5	82								Х					>			Х					Х							268	-11.7		
11.42	0	75								Х					>			Х					Х							268	-11.7		
11.44	115	74								Х					>			Χ						Х				Slight Fe Staining		268	-11.7		
11.54	200	40	Х							X)		_	Х		<u> </u>			X			<u> </u>	-			268	-11.7		
11.92 11.97	145 180	45 85								X))			X		1			X			1				268 268	-11.7 -11.7		
12.20	285	45					Х		+	X					· /		-	X	-	1			X			1	-			268	-11.7		
12.35	350	50	Х				^			Х					<u> </u>			X		1			X					 		268	-11.7		
12.47	100	65								Х					· >			Х		1			Х							268	-11.7		
13.02	150	60								Х					>			Х					Х							268	-11.7		
13.33	220	60								Х					>						х		Χ					Partial coating of white calcite		268	-11.7		
13.43	350	75						<u> </u>		Х)			Х		<u> </u>			Х							268	-11.7		
14.32 14.36	25 120	72 85	-					<u> </u>	+	X))			X		1			X			1	-			268 268	-11.7 -11.7		
14.36	185	62	1		\vdash		\vdash	1	+	X					- /			X	1	1		\vdash	X	-		1	+			268	-11.7		
14.42	30	80						\vdash		X					- /	_	-	X		1			X			1	+			268	-11.7		
14.45	120	80	1					t		Х					,)			Х		1			Х		1	t	1			268	-11.7		
14.52	140	65								Х					>						Х	Χ	Х					Minor white calcite and smears of pale bro	own clay	268	-11.7		
14.56	50	80								Χ)			Х					Х							268	-11.7		
14.70	170	80								Х					>					1	Χ			Х				White clacite and small patches of Fe Stair	ning	268	-11.7		
15.27	165	80	 					_	1	X					<u> </u>			₩		 	X		X			 	-	Very Minor white calcite		268	-11.7		
15.47 15.58	170 130	80 72	-		\vdash			 	+	X			\vdash))			+		1	X	Х	X		<u> </u>	+-	1-	White clacite and minor clay smears		268 268	-11.7 -11.7		
15.58	355	50	1		\vdash			 	+	X					 /			Х		+	^	^	X			+	+	write clacite and minor clay smears		268	-11.7		
15.68	75	90						\vdash		X					· ·		-	X		1			X			1	+			268	-11.7		
15.76	135	85								Х				t	· >		1	Х		1			Х							268	-11.7		
15.83	195	60								Χ					>							Х	Χ					Minor light brown clay		268	-11.7		
16.33	170	85								Χ)			Х					Х							268	-11.8		
17.05	180	85								Χ					>			Х					Х							268	-11.8		

17.64	25	84	Х						Х					Х		Х				Χ					268	-11.8		
17.76	30	80							Х					Х					Х	Χ				Minor smear of light brown clay	268	-11.8		
	270	20					_		Х	_	1			Х		Х			 	Х					268	-11.8		
	185	85	Х				-		X	_	1	 		X		Х		_	1	X			_		268	-11.8	\vdash	
			^				_				-	-	_			^		 	1			-	_	Age 19.1 a 1.5			\vdash	
	35	75					_		Х	_				Х		_		Х		Х				Minor light grey calcite	268	-11.8	—	
	145	80							Х		<u> </u>			Х		Χ				Χ					268	-11.9		
20.07	40	70							Х					Х		Χ				Χ					268	-11.9		
20.26	135	90							Х					Х		Х				Χ					268	-11.9		
20.57	225	65							Х					Х		Х				Χ					268	-11.9		ľ
21.10	120	90	Х						Х					Х		Х				Χ					268	-11.9		
	220	60							Х					Х		Χ				Χ					268	-11.9		
	170	90					_		Х	_	1			Х				1	Х	Х				Minor smear of light brown clay	268	-11.9		
	310	70					_		X		+	-	_	X		Х		+-	 ^	X				Willion Strictar of light brown city	268	-11.9	\vdash	
	315	70					-		_	_	1	 		X		Х	_	-	+	X						-11.9	$\vdash \vdash \vdash$	
							_		X		1							_	 						268		\vdash	
	230	75	Х				_		Х	_				Х		Х			ļ	Χ					268	-11.9	ldot	
	230	70							Х					Х		Χ				Χ					268	-11.9		
22.34	5	90							Х					Х		Х				Χ					268	-11.9		
22.48	30	60		T					Х			ЩГ		Х		Х				Χ		LT			268	-11.9	∟¬	\Box
22.73	170	48							Х					Х		Χ				Χ					268	-11.9		
22.96	290	52		Х										Х		Χ				Χ					268	-11.9		
23.03	20	60							Х			1 1		Х				Х		Х				Creamy white calcite coating	268	-11.9		
	220	65		-	-		-		X	_	1			X		Х		- H	T	Х				,	268	-11.9		\vdash
	320	65		- 	-+)			^	+	1	├─ ┼		X				Х	+		Х	H		Pale grey calcite / minor grey clay and very slight Fe staining	268	-11.9	\vdash	+-+
24.26	20	80	\vdash			+	`		Х	-	+	++	-	X		Х		- ^	+	Х	٨	┝		r are prey carette / minor grey clay and very slight re stalling	268	-11.9	\vdash	+
	140		\vdash				-		_	_	1	├─ ├				^			- V	^		├		National des / Landing distribution Factoring			$\vdash \vdash$	₩
		70					_		Х	_	1	-		Х		_			Х		Χ	_		Minor clay / localised dark brown Fe staining	268	-11.9		
	125	90							Х					Х						Χ					268	-11.9		
	130	90							Х	_				Х		Х				Χ					268	-11.9		
26.18	185	85							Х					Х		Х				Χ					267	-12.1		,
27.35	0	85							Х					Х		Х				Χ					267	-12.1		
27.48	30	80							Х					Х		Х				Χ					267	-12.1		
27.84	195	80							Х					Х		Χ				Χ					267	-12.1		
	175	85							Х			t		Х		Х				Х					267	-12.2		
28.74	5	80		Х						-	1	1 1		X		Х		-	1	X					267	-12.2	\vdash	
31.02	15	90		^			-		Х		1	 		X		^	_	Х	+	X				White / Grey calcite deposited on fracture surface	267	-12.4	$\vdash \vdash \vdash$	
				Х	-		-	-	^	-	1	 		X	-			_ ^	+	X			_	Writte / Grey calcite deposited on fracture surface			\vdash	
	320	85		Χ		_	-			_	+	 		_		Х		_	-						267	-12.4	igwdot	
31.34	0	50					_		Х	_	1	-		Х		Х				Х		_			267	-12.4		
	195	75							Х		<u> </u>			Х		Х				Χ					267	-12.4		
31.73	10	60	Χ						Х					Х		Х				Χ					267	-12.4		
31.76	10	85									Χ		Х					Х		Χ				Creamy white calcite vein, 4mm thick weak striae	267	-12.4		
31.82	20	70		Х									Х			Х				Χ					267	-12.4		
32.01	50	90							Х					Х		Χ				Χ					267	-12.4		
	330	50					1		Х			1 1		Х		Х				Х					267	-12.4		
	145	65	H		-	\dashv	\dashv	-	X		t	1 1		X		X		-1-	†	X		1	-		267	-12.4	\vdash	\vdash
	20	90		- 	-+		-		X		1	├─ ┼		X		X		+	+	X		H			267	-12.4	\vdash	+-+
	315	62	\vdash	+	-+	+	+		X		+	+	-+	X		X		-	+	X		 			267	-12.4	$\vdash \vdash$	++
			\vdash				-				1	├─ ├							1			├					$\vdash \vdash$	₩
33.11	30	35				_	4		X	_	1	$\vdash \!\!\!\! \perp$		Х		Х			1	Х		 	_		267	-12.4	igwdapsilon	↓ /
	310	80			_		_ _		Х	_	1	$oldsymbol{\sqcup}$	_	Х		Х	_	_ _	1	Χ					267	-12.4	igspace	
	310	70	Χ						Х					Х		Χ				Χ					267	-12.4		
34.05	60	75							Χ					Х		Χ		X		Χ				Minor white calcite coating fracture surface	267	-12.6	┖	
35.04	0	90	╚	T	T				Х		L^{-}	டர		Х		Χ	T		L	Χ		oxdot	T		267	-12.6	\Box	
35.35	10	72		Х										Х		Χ				Χ					267	-12.6		
	335	78							Х		1			Х		Х		-1	1	Х					267	-12.6		
	175	85	H		-	\dashv	\dashv	-	X		t	1 1		X		Х		-1-	†	X		1	-		267	-12.6	$\vdash \vdash$	\vdash
	235	90	\vdash	+	-+	+	+		X		+	+	-+	X		X		-	+	X		 			267	-12.6	$\vdash \vdash$	$\vdash \vdash \vdash$
	235	90	\vdash		-+	+	+	-	X		+	+ +	-+	X		X			1	X		+	-	+			\vdash	+
			\vdash						X	+	1	+						-	+		\vdash	├			267	-12.6	$\vdash \vdash$	+
	195	15					Κ .	_	_		 	\vdash		Х		Х			<u> </u>	Х		├	_		267	-12.6	igsquare	<u> </u>
	225	65			_				Х		1	$oldsymbol{oldsymbol{oldsymbol{eta}}}$		Х		Х				Χ		igsquare			267	-12.6	لــــــا	ļ!
	215	70							Χ			ш		Х		Χ	L			Χ					267	-12.6		
38.13	175	88							Х					Х		Χ				Χ					267	-12.6		
		22		Х										Х		Х				Χ					267	-12.6		
	230	22		^																								
38.20				^					Х					Х		Х				Х					267	-12.6	l i	1 1
38.20	305 5	75 15		^					X	_		\vdash		X		X				X					267 267	-12.6 -12.6		

39.35 180	45						Х				Х			Х					Χ			Minor orange Fe staining	267	-12.6		
40.53 160	40						Х				Х		Χ					Х					267	-12.6		
40.80 0	90						Х				Х		Χ					Х					267	-12.6		
41.03 50	88						Х				Х		Χ					Х					267	-12.6		
41.20 315	90	1					Х				Х							Х					267	-12.6		
41.67 180	10				Х						Х		Х			Х		Х				Traces of white calcite	267	-12.6		
41.97 30	30	1		-	<u> </u>		Х		+ +		Х		Х					Х		_		Traces of Write edicite	267	-12.6	+	
42.52 0	90			_	1		X		+		X		X		-			X		_	_		267	-12.6		
43.28 225	62	+		-			X				X		X			-		Х					267	-12.5		
		-	_	_								_				-										
43.40 170	10	+			-		Х				Х	_	Х					Х			_		267	-12.5		
43.70 75	60	_		_			Х				Х		Х					Х					267	-12.5		
43.90 285	80						Х				Χ		Χ					Х					267	-12.5		
44.02 15	48						Х				Χ		Χ					Х					267	-12.5		
44.22 170	40						Х				Х		Χ					Х					267	-12.5		
44.47 30	50						Х				Х		Χ					Χ					267	-12.5		
44.52 30	50						Х				Х		Χ					Χ					267	-12.5		
45.16 15	50						Х				Х		Χ					Χ					267	-12.5		
45.30 180	75	1					Х		1 1	Х				Х		Х			Х			White calcite, minor Fe staining	267	-12.5		
45.47 30	55	T		1	1		Х		1 1		Х		Х		f			Х		_	1		267	-12.5		
45.62 30	70	1 1		-1-	1		X		+		Х		X	H	-			X		\neg	+		267	-12.5		
45.70 25	55	1			+	\vdash	X	-	+ +		X			Х	- 	-+	-+		Х	-	+	Slight Fe staining	267	-12.5	 -	
45.88 175	42	+			+	H	X		+		X			^	-	х		Х	^	+	+	Discontinuous coating of white calcite	267	-12.5		
45.88 175 46.06 0		+			+	\vdash	X	_	+	_	X		Х	H		^		X			+	Discontinuous coating of white calcite	267	-12.5		
	75	+			+				+	_		-		\vdash							+	<u> </u>				
46.88 310	75	+		_	1	\vdash	X		+		Х		Х	├				Х		-+		1.0.	267	-12.7		
47.20 120	80						Х				Χ							Х				Minor brown clay	267	-12.7		
47.50 15	80						Х				Χ		Χ					Х					267	-12.7		
47.75 320	80				Х						Х					Χ		Χ				Partial coating of white calcite	267	-12.7		
47.88 310	75						Х				Х					Χ		Х				Partial coating of white calcite	267	-12.7		
48.34 240	80						Х				Х		Χ					Х					267	-12.7		
49.08 175	75						Х				Х		Χ					Х					267	-12.7		
49.54 45	84						Х				Х		Χ					Χ					267	-12.7		
49.70 225	58						Х				Χ		Χ					Х					267	-12.7		
50.28 0	90	1					Х				Х		Х					Х					267	-12.7		
50.77 160	45				1		х		+ +		Х		Х				_	Х					267	-12.7		
51.04 175	90	1		-			X		+ +		Х		Х					Х			-		267	-12.7		
51.52 140	50	+		-			X				X		X			-		Х					267	-12.7		
51.60 120		+ +			+		X		+		X	-	X					X		_	_		267	-12.7		
	65	-		_	-				+										_		_					
51.65 120	70	_		_			Х		+		Х		Х					Х					267	-12.7		
51.75 125	65				ļ		Х				Χ		Χ					Х					267	-12.7		
51.84 145	80						Х				Χ		Χ					Х					267	-12.7		
52.14 140	62						Х		\perp		Χ		Χ	لِــــا				Х					267	-12.7		
25.23 140	60						Х				Χ		Χ					Х					267	-12.7		
52.70 45	85						Х		ШΠ		Χ		Х			\Box \Box		Х					267	-12.7		
53.07 310	65	Х					Х				Χ		Χ					Χ					267	-12.7		
53.27 345	30						Х				Χ		Х					Х					267	-12.7		
53.35 0	90						Х				Χ		Χ					Х					267	-12.7		
53.43 0	90						Х				Х		Х					Х					267	-12.7		
53.48 80	85	Х		1	Х				1 1		Х		Х	H	f			X		_	+		267	-12.7		
		<u> </u>			+^-	\vdash	Х		+ +		X		X	\vdash		-+		X	-+	+	+		267	-12.7		
52.52 355	85		1		+	\vdash	^		+ +		X		X	\vdash		-+		Х	-+	+	+			-12.7		
52.52 355 53.56 385	85 75	Y			v								^	1					1				267			
53.56 285	75	Х		_	Х	\vdash	v		+														267		i i	
53.56 285 53.80 5	75 90	Х			Х		Х				Χ		Χ					Χ					267	-12.7		
53.56 285 53.80 5 53.94 0	75 90 90	Х			Х		Х				X		X					X X					267 267	-12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170	75 90 90 85	Х			X		X				X X X		X X X					X X					267 267 267	-12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20	75 90 90 85 85	Х			X		X X X				X X X		X X X					X X X					267 267 267 267	-12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.44 20	75 90 90 85 85 85	X			X		X X X				X X X X X X		X X X X					X X X X					267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.42 20 55.73 355	75 90 90 85 85 85 90	X			X		X X X				X X X X X		X X X X X					X X X X X					267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.44 20	75 90 90 85 85 85	X			X		X X X				X X X X X X		X X X X					X X X X					267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.73 355 56.14 30	75 90 90 85 85 85 90 44	X					X X X				X X X X X		X X X X X					X X X X X					267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.73 355 56.14 30	75 90 90 85 85 85 90	X					X X X X				X X X X X X		X X X X X					X X X X X X X X X					267 267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.44 20 55.73 355 56.14 30 56.61 320 57.28 320	75 90 90 85 85 85 90 44 85 85						X				X X X X X X X X		X X X X X X X					X X X X X X X X					267 267 267 267 267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.44 20 55.73 355 56.14 30 56.61 320 57.28 320 57.75 55	75 90 90 85 85 85 90 44 85 85 85	X			X		X X X X X X X X X				X X X X X X X X X X X X X X X X X X X		X X X X X X X X					X X X X X X X X X X X X X X X X X X X				Curved / Arcuste joint surface	267 267 267 267 267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7		
53.56 285 53.80 5 53.94 0 54.70 170 55.34 20 55.44 20 55.73 355 56.14 30 56.61 320 57.28 320	75 90 90 85 85 85 90 44 85 85						X				X X X X X X X X		X X X X X X X					X X X X X X X X				Curved / Arcuate joint surface	267 267 267 267 267 267 267 267 267 267	-12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7 -12.7		

30. 0. 0. 0. 0. 0. 0. 0.																													
5.75 5.75 5.85	58.48 0	0	80							Х				Х			Χ				Х				Possible drillers break	267	-12.7		
5.75 5.75 5.85												х									Х								
Sect							_	+		Х	-					_						1	-	1 1					
933 100 90 100 1					-		-	+								\dashv			-			+	_	+					
Second Column Col					-			_	_	^						-+			_	_	_	+		+-+	0 1/4				
100 100							^	-					\rightarrow	_							_	-	_	+	Curved / Arcuate Joint Surrace				
1.27 1.28 75																													
1.50 1.50																	Χ												
8.58 289 65	61.47 14	40	70							Х				Х						X	Х				Trace grey calcite	267	-12.8		
Column C	61.80 90	90	85	Х			Χ							Х			Χ				Х					267	-12.8		
Column C	61.85 20	00	65				Х							Х				Х				Х			Partial orange / brown Fe staining	267	-12.8		
Column C							_				-					_					×	+	-	1 1					
15								-		v						\rightarrow					_	+	+	+	very nough joint surface				
6.27 200 20 1					-		-		_							-+	^			.,			-	+	0.11				
6.00								_	_							_				Х				+	Light grey calcite coating				
																					_								
6420 50 50 50	63.97 20	00	42							Х				Х			Χ				Х					267	-12.8		
64.50 345 50	64.06 30	30	65							Х				Х			Χ				Х					267	-12.8		
64.50 345 50	64.20 21	10	50							Х				Х			Х				Х					267	-12.8		
9.89 180 85								+	1		-t											T		+					
8-77 130 75						-+		-			-+	\dashv	+			-+		-+				+	+	+				-	
6.88 190 80 80 80 80 80 80 80				\vdash			-	-1-			— <u></u>	-	+			-+		-			_	+-	-	+				-	
6.69 50 78 78 78 78 78 78 78 7				\vdash			-	-			 -		+									+	-	+				+	
Fig.							_	4					\longrightarrow						_			4	-	+					
17.5 78														_							_								
67.00 200 80								$\perp \! \! \! \perp^{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $																				T	
67.70 45 90 90 90 90 90 90 90 9	67.20 17	75	78							Х				Х			Χ				Х					267	-12.9		
6.70	67.60 22	20	80							Х				Х			Χ				Х					267	-12.9		
6.79 60 72 X																t					_								
68.30 350 90				v	-		-	+								\dashv		_	-		_	+	_	+					
68.66 89.0 90				^		_		-	_											_		-		+ +					
68.66 350 90								_	_							_						_		+					
68.78																							_						
68.78																	Χ				_	_							
68.90 170 75 75 75 75 76 76 76 76	68.73 0	0	90							Χ				Х						X	Х				Calcite vein 1mm thick	267	-12.9		
99.5 355 90	68.78 0	0	80							Х				Х						Х	Х				Calcite vein	267	-12.9		
69.56 20 75 80 80 80 80 80 80 80 8	68.90 17	70	75							Х				Х			Χ				Х				Very irregular	267	-12.9		
9.96 20	69 25 35	55								Х				X			Χ				Х		1		, ,	267	-12 9		
69.98 140 75								-	-		— h			_						-	_		+	+ +					
69.98				. v	-	-	-	+	-				-+			-+				-		+-	-	+ +				-	
10				Х				-										_		_	_	+	-	+					
Description								_														_	_						
7.60 5																													
7.1.43 355 80 7 7.2.9 X <	70.27	L5	80							Х				Х			Χ				Х					267	-12.9		
7.190 50 82 1 </td <td>70.60 5</td> <td>5</td> <td>80</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td> <td>Χ</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Slickensides, plunging at 25' to 270'</td> <td>267</td> <td>-12.9</td> <td></td> <td></td>	70.60 5	5	80									Х		Х			Χ				Х				Slickensides, plunging at 25' to 270'	267	-12.9		
7.190 50 82 1 </td <td>71.43 35</td> <td>55</td> <td>80</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td>Χ</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Curved Arcuate Joint</td> <td>267</td> <td>-12.9</td> <td></td> <td></td>	71.43 35	55	80				Х							Х			Χ				Х				Curved Arcuate Joint	267	-12.9		
72.34 310 80 1 1 X 1 X X 1 X 1.2.9				H		-t-	+	+	1	х	-	_	+						_	\dashv	_	1	1	+					
72.45 50 30 N </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>1</td> <td>+</td> <td></td> <td>-+</td> <td>_</td> <td>+</td> <td></td> <td></td> <td>-+</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							_	1	+		-+	_	+			-+		-				+	+	+				-	
72.50 135 45 X I X I X I X I X I X I I X I X I X I I Y I 1.2.9 I 1.2.9 I 1.2.9 I 1.2.9 I I I Y I X X X X I X I Y I 1.2.9 I				\vdash				-1-				-+	+			-+	^	v			_ ^	V	-	+	Slight nale orange to staining			-	
72.80 0 90 I I X I X I X I X I X I X I X I X I X I X I X I X I X I X I X I Y Y <td></td> <td></td> <td></td> <td>H.,-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td> -</td> <td></td> <td>+</td> <td></td> <td></td> <td>-+</td> <td></td> <td>^</td> <td></td> <td></td> <td>٠.</td> <td>+ <u>^</u></td> <td>-</td> <td>+</td> <td>Silgit pale orange re Staming</td> <td></td> <td></td> <td></td> <td></td>				H.,-			-				 -		+			-+		^			٠.	+ <u>^</u>	-	+	Silgit pale orange re Staming				
73.20 295 30 1 1 X 1 X<				Х			_	4											_			4—	4	+					
73.74 35 72 N </td <td></td>																													
73.98 75 65 X Image: color of the color of t	73.20 29	95	30	L				\perp	L	Х				X			Χ				Х					267	-12.9		
73.98 75 65 X Image: color of the color of t			70							Х				Х		T	Х				Х					267	-12.9		
74.50 350 78 <		35	/2				t_	1													Х				very small mm scale steps				
74.60 80 75 1 X 1 X </td <td>73.74 35</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td>-+</td> <td></td> <td>\neg</td> <td></td> <td>. –</td> <td></td> <td>+</td> <td>+</td> <td>1</td> <td> ,</td> <td></td> <td></td> <td>-</td> <td></td>	73.74 35				Х											-+		\neg		. –		+	+	1	,			-	
74.73 195 72 Image: Control of the co	73.74 35 73.98 75	75	65		Х	-		_				x		v											White grey calcite vein, sub-horizontal striae		-12 9	1	
75.14 5 80 1 X 1 X <td>73.74 35 73.98 75 74.50 35</td> <td>75 50</td> <td>65 78</td> <td></td> <td>Х</td> <td>#</td> <td></td> <td>Ŧ</td> <td></td> <td></td> <td>_</td> <td>Х</td> <td>++</td> <td>Х</td> <td>+</td> <td>v</td> <td><u>_</u></td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>+</td> <td>White grey calcite vein, sub-horizontal striae</td> <td>267</td> <td></td> <td></td> <td></td>	73.74 35 73.98 75 74.50 35	75 50	65 78		Х	#		Ŧ			_	Х	++	Х	+	v	<u>_</u>			X				+	White grey calcite vein, sub-horizontal striae	267			
75.27 150 55 Image: square	73.74 35 73.98 75 74.50 35 74.60 80	75 50 30	65 78 75		Х		Х					Х				Х			+	×	Х					267 267	-12.9		
75.50 170 85 Image: square	73.74 35 73.98 75 74.50 35 74.60 80 74.73 19	75 50 30 95	65 78 75 72		Х		Х	:				Х		Х		Х	Х			X	X					267 267 267	-12.9 -12.9		
75.80 20 75 X 1 X 1 X 1 X 1 X 1 X 1 12.9 1	73.74 35 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5	75 50 80 95 5	65 78 75 72 80		X		Х			Х		X		X		Х	X			X	X X X					267 267 267 267	-12.9 -12.9 -12.9		
75.80 20 75 X 1 X 1 X 1 X 1 X 1 X 1 12.9 1	73.74 35 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5	75 50 80 95 5	65 78 75 72 80		X		Х			Х		X		X		Х	X			X	X X X					267 267 267 267	-12.9 -12.9 -12.9		
75.92 30 65 1 X </td <td>73.74 35 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5 75.27 15</td> <td>75 50 80 95 5</td> <td>65 78 75 72 80 55</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>X</td> <td></td> <td>X</td> <td>X X</td> <td></td> <td></td> <td>X</td> <td>X X X</td> <td></td> <td></td> <td></td> <td>Very rough texture - almost stepped</td> <td>267 267 267 267 267</td> <td>-12.9 -12.9 -12.9 -12.9</td> <td></td> <td></td>	73.74 35 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5 75.27 15	75 50 80 95 5	65 78 75 72 80 55		X		X			Х				X		X	X X			X	X X X				Very rough texture - almost stepped	267 267 267 267 267	-12.9 -12.9 -12.9 -12.9		
76.09 25 70 1 1 X 1 X </td <td>73.74 33 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5 75.27 15 75.50 17</td> <td>75 50 80 95 5 50 70</td> <td>65 78 75 72 80 55 85</td> <td>x</td> <td>X</td> <td></td> <td>×</td> <td></td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>X X X</td> <td></td> <td>X</td> <td>X X X</td> <td></td> <td></td> <td>X</td> <td>X X X X</td> <td></td> <td></td> <td></td> <td>Very rough texture - almost stepped</td> <td>267 267 267 267 267 267</td> <td>-12.9 -12.9 -12.9 -12.9 -12.9</td> <td></td> <td></td>	73.74 33 73.98 75 74.50 35 74.60 80 74.73 19 75.14 5 75.27 15 75.50 17	75 50 80 95 5 50 70	65 78 75 72 80 55 85	x	X		×			X				X X X		X	X X X			X	X X X X				Very rough texture - almost stepped	267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9		
76.19 165 60 X <	73.74 33 73.98 75 74.50 35 74.60 86 74.73 19 75.14 5 75.27 15 75.50 17 75.80 20	75 50 80 95 5 50 70	65 78 75 72 80 55 85	X	X		X			XXX				X X X X		X	X X X X			X	X X X X X				Very rough texture - almost stepped	267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9		
76.39 50 50 X X X X X X X X X X X X X X X X X	73.74 33 73.98 75 74.50 35 74.60 86 74.73 19 75.14 5 75.27 15 75.50 17 75.80 20 75.92 36	75 50 80 95 5 5 50 70 20 80 80 80 80 80 80 80 80 80 80 80 80 80	65 78 75 72 80 55 85 75 65	X	X		X			X X X				X X X X		Х	X X X X X			X	x x x x x x				Very rough texture - almost stepped	267 267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9		
76.72 200 70 X X X X X X X X X 267 -12.9	73.74 33 73.98 75 74.50 35 74.60 85 74.73 19 75.14 5 75.27 15 75.50 17 75.80 22 76.09 22	75 50 80 95 55 50 70 20 80 925	65 78 75 72 80 55 85 75 65	X	X		X			X X X X				X X X X X		Х	X X X X X X			X	X X X X X X X				Very rough texture - almost stepped	267 267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9		
	73.74 3: 73.98 7: 74.50 35 74.60 80 74.73 19 75.14 5 75.27 15 75.50 17 75.80 20 76.09 2: 76.19 16	75 50 50 80 95 5 5 50 70 20 80 225 65 65	65 78 75 72 80 55 85 75 65 70		X					X X X X				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		X	X X X X X X X X X X X X X X X X X X X			X	X X X X X X X X				Very rough texture - almost stepped	267 267 267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9		
77.10 325 70 X X X X X X X X 12.9	73.74 3: 73.98 7: 74.50 355 74.50 85 74.73 19 75.14 5 75.27 155 75.80 20 75.92 30 76.09 2: 76.19 166	75 50 80 995 55 50 70 20 80 80 925 665 660	65 78 75 72 80 55 85 75 65 70 60 50		X					X X X X X				X		X	X X X X X X X X X X X X X X X X X X X			X	X X X X X X X X X				Very rough texture - almost stepped	267 267 267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9		
	73.74 3: 73.98 7: 74.50 355 74.50 85 74.73 19 75.14 5 75.27 155 75.80 20 75.92 30 76.09 2: 76.19 166	75 50 80 995 55 50 70 20 80 80 925 665 660	65 78 75 72 80 55 85 75 65 70 60 50		X					X X X X X				X		X	X X X X X X X X X X X X X X X X X X X			X	X X X X X X X X X				Very rough texture - almost stepped	267 267 267 267 267 267 267 267 267 267	-12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9 -12.9		

7.77 7.75																											
7.67 68 96 76 77 78 78 78 78 78 7	77.17 205	85							Х				Х		Х				Х						267	-12.9	
7.67 68 96 76 77 78 78 78 78 78 7			Х						X										х	_							
The control of the				1 1		_	_		_							1							1				
7.90						-	+															_	1				
7.70			<u> </u>	\vdash			_									1	-		_	_	_	_	+				
7.00			_			_	_		X						Α.				^	_			_				
The control of the						;	(Х					Х			urved / Arcuate fracture, Minor Fe staining			
7.11 7.12 7.12 7.13																											
The control of the	78.06 155	90	Х						Х				Х		Х				Х						267	-12.9	
7.37 7.39	78.13 180	90	Х						Х				Х		Х				Х						267	-12.9	1
7.37 7.39	78.18 160	85	Х						Х				Х		Х				Х						267	-12.9	
140 90 X																											
8030 100				1		٠,	,	-		+						1			_	_	_	_	+				
80.15 100 50			-	v	-	+	`	-	-	+				 		1					_	-	-				
## ## ## ## ## ## ## ## ## ## ## ## ##			-	^						-						-					_	_	-				
### ### ### ### ### ### ### ### ### ##			<u> </u>				_		_						Х				_	_							
8.15									Х									Х	_	_				Thin coating of grey calcite		-12.9	1
8.20 300 90	80.94 310	85							Х				Х		Х				Х						267	-12.9	ı
## 18.65 5 78	81.15 40	74							Х				Х		Х				Х						267	-12.9	
## 18.65 5 78																											
1815 360 38			1	\Box				_	1		Х				1	Х				+	х	_		weak, sub-horizontal striae - Minor Fe staining			
8.29 30 60			1						v						v	Ĥ				_	-						
82.59 260 68 68 68 68 68 68 68			+	\vdash		٠,	, —	-	^			++		 			H				-			+			
B2-96 220 68			+	\vdash			\vdash		+	1	L.,			\vdash		1							1				
82.80			4	\sqcup			_		_	1						!	<u> </u>		_	_			1	Striae formed by intersection offracture with stylolite			
83.10			1	Ш							Х																
83.40 355 44			1)	(Curved / arcuate			
83.53 385 84	83.12 320	58							Х				Х		Х				Х	:					267	-13.1	
83.53 385 84	83.40 355	44							Х				Х		Х				Х						267	-13.1	
84.05						7													х	7							
84.25			+	1 1		+	_		X							1							1				i
8505 170 80			+	1		-	_				~					1					_	_	+	Stripp from intersection of stulplites			
85.12 170 82 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	\vdash			_			_	^					1	-				_	_	+				
86.10 310 54 I I I I X I X I X I X I I X I I X I I X I I I X I I X I I I X I I I X I I X I I X I I X I I X I I X I I X I I X I I X I I X I I X I<			_			_	_		_						Α.				^	_			_				
86.02 350 38																Х		Х			Х			White / orange Fe stained clacite			
86.06 35.0 38																											
96.56 350 52	86.38 220	50							Х				Х		Х				Х	:					267	-13.1	
87.74 205 5.8 Image: Control of the c	86.62 350	38							Х				Х		Х				Х						267	-13.1	I
87.74 205 5.8 Image: Control of the c	86.96 350	52							Х				Х		Х				Х						267	-13.1	
87.5 28.5 70 X									_																		
88.77			v	1					_							1			_	_		-					
88.77			_ ^	1		+	+	-						 		1					-	-	+				$\overline{}$
88 82 90 78 Image: Control of the con			-	1	-		-	-								1					_	_	-				
88.99			-				_		Х																		
89.13						_	(
89.55 210 52						X																		Partially striated			
89.55 210 52	89.13 340	42							Х				Х		Х				Х	: 丁 ̄		T			267	-13.1	
89.44 70																						i i					
89.64 10 78 K </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>)</td> <td></td> <td></td> <td>1</td> <td></td> <td>Curved / Arcuate</td> <td></td> <td></td> <td></td>			1)			1															Curved / Arcuate			
89.75 100 86 X<			1	\vdash		一广		_	¥								1				\dashv	-1-					
90.00 80 84			- v	++		٠,	,	+	^	1	\vdash	++				\vdash	 	 -			+		1	Curved / Arcuste			
90.30			+^	₩		_	_		-	1	-			\vdash		1							1	cuived / Arcuate			
90.85 330 82			1	$\vdash \downarrow$		_	_	_		1	\sqcup	-	Х			1	<u> </u>		_	_			1	ļ			
91.18 350 90 1 1 X 1 X<			1	Ш)				1				Х				Χ									
91.48			1							Χ														smooth			
91.58	91.18 350	90	1						X				Х		Х			T	Х	: [267	-13.1	
91.58																			Х							-13.1	
91.83			1																_	_							
91.96			1		 				_	_									_	_				 			
92.71 345 78			+-	\vdash	-+		+	+			-	++		 		+			_	_	+		+	+			$\overline{}$
93.14 165 88			1	\vdash		_					-	-+		\vdash		1	\vdash		_	_			1				
93.97 320 82			1	$\vdash \downarrow$		_	_	_	_		\sqcup	-			Х	1	<u> </u>						1	<u> </u>			
94.75 350 70 1 1 X 1 X<			1	Ш														Χ						Partially coated with white calcite			
95.00 10 78	93.97 320	82	1	<u>ш</u> Т					Х				Х		Х		I		Х	<u></u>					267	-13.1	
95.00 10 78	94.75 350	70							Х				Х		Х				Х	: T					267	-13.2	
95.32 355 80			1					1							1			Х	Х					Partially coated with white calcite			
95.98 340 76 X X 2 267 -13.2			1												Х				_	_				,			
				v			+			1	\vdash					\vdash	H				-		1	+			
90.UZ 35U 8			+^	_ ^					+.,	1	-	-+		\vdash		\vdash			_	_			1				
	96.02 350	78	1					I	Х	1			Х		Х	1			Х	·					267	-13.2	

96.13 15	90		Х									Х		Χ				Х					267	-13.2		
96.84 5	90				Х							Χ		Χ				Х				Curved / Arcuate	267	-13.2		
97.44 180	48							Х				Х		Х				Х					267	-13.2		
97.53 195	86							X			Х			^		Х	,	- ^	Х			Joint infilled with 5mm white calcite veinlet minor Fe stain	267	-13.2		
				_	-				_	\vdash	^		_			^	`		^	-	++	Joint Illilled with Sillill White Calcite Veilliet Illillor Fe Stall				
98.92 225	74							Х		-		Х		Χ			_	Х			-		267	-13.2		
98.37 320	48							Χ				Х		Χ				Χ					267	-13.2		
98.92 5	90							Χ				Χ		Χ				Χ					267	-13.2		
99.35 225	58							Χ				X				Х	(Х				Partially coated with grey calcite	267	-13.2		
99.40 185	80							Χ				Х		Х				Х					267	-13.2		
99.70 185	36							Х				Х			Χ			1	Х			Trace Fe staining	267	-13.2		
100.08 355	40							Х				Х		Х				Х					267	-13.2		
100.45 340	46				_			X	+	\vdash		X		X			_	X		-	+		267	-13.2		
			٧.	_	-			^	_	\vdash			_				_			-	++	Management / incoming a state of conference				
	70		Х		-	-	-		-		_	Х		X				Х		-	+	Very rough / irregular - pitted surface	267	-13.2		
100.65 195	56							Χ				Χ		Χ				Х					267	-13.2		
100.74 215	62							Χ				Х		Χ				Х					267	-13.2		
100.85 140	62		Х									X			Х			Х				Minor Fe Staining	267	-13.2		
100.91 210	70							Х				Х		Χ				Х					267	-13.2		
101.16 345	36				1			X		1 1		Х				Х		Х		1	1 1	Trace grey calcite	267	-13.2		
101.70 310	42			-	1			X		 	_	Х		Х		+		X		1	1 +	Very rough - almost stepped	267	-13.2		
101.43 350	90				+			X	1	\vdash	х	 ^ 	_	^		X	,	_ ^	Х	+	+ +	Coarsely crystalline white calcite vein - Fe staining	267	-13.2		
			 -		+				1	\vdash	^	H., H		· ·		×	\	+		+	+					
101.65 170	72	1			4—	1		Х	4—	$oldsymbol{\sqcup}$	_	Х		Х			-	4	Х	4—	1	Minor Fe staining	267	-13.2		
102.27 0	38							Χ		$ldsymbol{\sqcup}$		Х		Χ				Х		1			267	-13.2		
102.50 0	90	Χ					Х			f		Х			Χ		$\perp \perp^{-}$		Х		<u>1 —</u> Т	Stiae with locallised Fe Staining	267	-13.2		L
102.55 180	18	Χ						Х				Χ		Χ				Χ					267	-13.2		
103.48 340	80	Х						Х				Х		Χ				Х					267	-13.2		
103.87 355	86							Х				Х		Х				Х					267	-13.2		
103.92 330	76	Х						X				X		X				X					267	-13.2		
				_	_	_			+								_		<u> </u>	-	++					
103.95 210	62	Χ						Х				Χ		Χ				Х			1		267	-13.2		
104.15 150	38							Χ				Χ		Χ				Χ					267	-13.2		
104.78 350	74							Х				Χ		Χ				Χ					267	-13.2		
105.42 350	88							Χ				Х		Χ				Х					267	-13.2		
105.54 345	85							Х				Х		Χ				Х					267	-13.2		
105.70 0	90							Х				Х		Χ				Х					267	-13.2		
106.13 185	50							Х				Х		Х				Х					267	-13.3		
106.30 150	62							X				X		X				X			1 1		267	-13.3		
				_	_	_			+								_		<u> </u>	-	++					
107.10 5	50							Х		-		Х		Χ				Х					267	-13.3		
107.35 10	48							Χ				Х					Х					Trace Fe staining -minor light brown clay	267	-13.3		
107.84 180	88							Х				Х		Χ				Х					267	-13.3		
108.61 180	44							Х				Х		Х				Х					267	-13.3		
108.80 40	70							Х				Х						Х					267	-13.3		
108.92 305	84						_	Х				Х				Х		Х				Slightly oxidised calcite	267	-13.3		
108.98 320	90			-	1		_	X		 	_	Х		Х		+^	+	X		1	1 +		267	-13.3		
109.40 320	90				+			X	+	\vdash	-		-+	X			+	X	1	+	+ +	+	267	-13.3		
		1		_		1			1	\vdash		Х					_		1		₩.					
109.17 140	84	1			4—	1		Х	4—	$oldsymbol{\sqcup}$	_	Х		Χ			-	Х	<u> </u>	4—	1		267	-13.3		
108.36 150	70							Χ		$ldsymbol{\sqcup}$		Х		Χ				Х		1			267	-13.3		
109.42 140	88	L				<u>L</u>		Х				Χ		Χ				Χ	L				267	-13.3		
109.54 115	86	Χ	Х									Χ		Χ				Х					267	-13.3		
109.60 320	78				1			Х				Х		Х				Х			1 1		267	-13.3		
109.91 310	90			-	+			X		 	_	X	-			Х		X		1	1 +	 	267	-13.3		
110.25 300	74			_	+			X	1	 	-	X		Х		+^	+	X		+	+	+	267	-13.3		
					+	1			+	\vdash	-			^		-	_	_	1-	+	+					
110.95 315	52	_				1	_	Х	1	$oldsymbol{\sqcup}$		Χ				Х		Х	<u> </u>	4	1—1		267	-13.3		
111.09 325	78							Х				Χ		Χ				Χ					267	-13.3		
111.30 60	86						I T	Х		1 T		Х		T		Х		Х		1	1 T		267	-13.3		
112.40 325	82		Х									Χ		Χ				Х					267	-13.4		
113.52 30	54		Х		1							Х				Х		Х					267	-13.4		
114.00 0	8	Х			Х		 	- 1		1 1	_	Х		Х		+^		X		1	1 - 1	 	267	-13.4		
115.30 335	84	^			_ ^		 	v	+	\vdash	-	X		X	-			X	1	+-	1			-13.4		
		1			+	\vdash		X	+	\vdash	-		-+				+-		1-	+	++		267			
117.92 215	88	_				1		Х	1	$oldsymbol{\sqcup}$		Х		Χ		_		Х	<u> </u>	4	1—1		267	-13.4		
	82	i l						Х		$ldsymbol{\sqcup}$		Х		Χ				Х		1			267	-13.5		
118.32 330		_							1		1	Х		Х	1	- 1	1	X	1	1	1	1	267	-13.5		1
118.32 330 118.74 330	80							Х															267			
		Х			Х			Х				X		X				X					267	-13.5		
118.74 330	80	Х			Х			X																		

					-		- 1										_											
119.52	230	56					_		Х		-	\sqcup		X		Х		1	\vdash		Х					267	-13.5	
119.66	235	70	<u> </u>		_	-	\perp		Х		4-	\sqcup		X		1	4—	1-	L		Х		\vdash			267	-13.5	——
120.15	50	24				Х	_				-			Х		Х		-	Χ	_	Χ			_		267	-13.5	
120.68	10	90				Х	(_				Х		Х				_	Χ					267	-13.5	
120.95	5	84					_		Х	_	_			Х		Х					Χ					267	-13.5	
121.40	135	90							Х					Х		Х	_				Χ					267	-13.5	
121.58	140	62	Χ						X					Χ			Х					Χ				267	-13.5	
122.10	135	70		Χ										Χ			Х					Χ				267	-13.5	
122.40	340	84							Х	:			Х						Χ			Χ				267	-13.5	
122.58	150	70				Χ	(Х		Х					Χ					267	-13.5	
122.64	140	70		Χ										Χ		Х					Χ					267	-13.5	1
122.80	50	70				Χ	(Χ					Χ		Χ					267	-13.5	
123.00	115	78				Χ	(Х		Х					Χ					267	-13.5	
123.05	115	74				Χ	(Х		х						Х				267	-13.5	,
123.28	140	74				Х	(Х		Х					Χ				Very rough joint surface	267	-13.5	$\overline{}$
123.38	20	68					1		Х					Х		1			Χ		Χ				Minor white grey calcite	267	-13.5	$\overline{}$
123.44	320	80				Х	(Х		Х					Х				Crystalline white calcite vein	267	-13.5	
123.52	160	60		Х	-	+	\pm	\dashv	\dashv		+-	\vdash		X		X		1				Х		-	Pitted surface - Dissolution	267	-13.5	$\overline{}$
123.60	325	40					\dashv		Х		1	++	_	X		X		1-	\vdash		Х		\vdash	-+		267	-13.5	-
124.12	15	76					\dashv		X	_	1	++	_	X			+	1-	Х	_	Х		\vdash	-+	Minor light grey calcite	267	-13.5	-
124.12	130	78		- 					X	_	+	\vdash	_	X	\vdash	+	+	1	X	_	X		H		Minor white calcite	267	-13.5	$\overline{}$
125.05	50	90			_	Х	,	_	^	·	+	 		X		Х			^		Х		 		Curved / arcuate	267	-13.5	$\overline{}$
125.05	25	64	\vdash			X				-	+	\vdash		X		X		1	\vdash		X	-	\vdash		Curveu / arcuate	267	-13.5	
125.28	320	90	\vdash				`		Х	.	+	++		X	\vdash	X		1-	├	+	X		├			267	-13.5	
	240	80	Х						X	_	+	++		X	\vdash	X		1-	 	+	^	_	-		Vancuusels Fo staining	267	-13.5 -13.5	
126.10			Χ				,		Α.		+	\vdash				_	_	-			.,	Χ	-	-	Very weak Fe staining			
126.25	150	58				Х	<u> </u>	_		_	-	1		Х		Х	_	-			Х			_		267	-13.5	
126.72	235	72					_	_	Х		_	1		Х		Х		-			Х			_		267	-13.5	
126.83	325	64							Х					Χ		Х					Χ				Very irreglaur jointing	267	-13.5	
126.87	325	64							Х	_				Х		Х					Χ					267	-13.5	
126.93	325	76							Х	:	<u> </u>)	_	_		ļ		Χ					267	-13.5	
127.05	200	80				Х	_				_			Х		Х					Χ					267	-13.5	
127.54	150	68				Χ								Х		Х					Χ				Slight undulation	267	-13.5	
127.61	320	70				Х	_							Х		Х					Χ					267	-13.5	
127.67	315	82				Χ	(Χ		Х					Χ					267	-13.5	
127.80	220	74							Х					Χ		Х					Χ				Sub-parallel white calcite veinlets	267	-13.5	
127.91			Х						Х	:				Χ		Х					Χ				Non Intact / broken core - pocssibly drilling related	267	-13.5	1
128.36	195	52							Х					Х		Х					Χ					267	-13.5	
128.41	165	62							Х					Х		Х					Χ					267	-13.5	i 1
128.48	150	62							Х	:				Х		Х					Χ					267	-13.5	,
129.60	195	62				Χ	(Х		Х					Χ					267	-13.5	
129.83	20	60		Χ										Х		Х					Χ					267	-13.5	
130.25	205	42								Х	1			Х		1			Х		Х				Slightly polished - black argillite coating surface	266	-13.6	
130.30	80	80		- †			+	Х	_	Ť	1	†		Х		1	+	1	Х		Х				Slightly polished - black argillite coating surface	266	-13.6	
130.62	170	84		- 			\dashv		Х		1	+		Х		Х	+	1			Х		\vdash	\dashv		266	-13.6	
131.47	160	48					1	- t	X		1			Х		Х		1			Х					266	-13.6	
131.60	80	80	Х			Х	7	-	Ť		1	t		Х		†	+-	1	Х		Х		\vdash		Black argilite - stylolitic contact	266	-13.6	$\overline{}$
131.71	350	70	_^				+		Х	+	1	++	_	X		Х	+	1-	^	_	Х					266	-13.6	
132.14	340	86					+		X	_	+	\vdash	_	_	Х	+^	+	1	Х	_	X		\vdash		White calcite vein	266	-13.6	$\overline{}$
133.45	210	48	\vdash		-	-	+	-+	X		1	⊢ 	-	Х	^	Х	+-	1-	^	_	X		\vdash	-+	vvince calcite veni	266	-13.6	
134.73	160	62	\vdash		-	Х	,	-+	^	·	1	⊢ 	-	X		X		1-	\vdash	_	Х		\vdash	-+	+	266	-13.6	$\overline{}$
134.73	340		\vdash			+^	\		· ·		+	\vdash	x	_^		+^	+-	1	х	\vdash	X	-	\vdash		Infilled with 20mm thick white salaite vain		-13.6	
		80	\vdash						X		+	++	^	\ \ \	\vdash	-	+	1-	^	+			-		Infilled with 20mm thick white calcite vein	266		
135.38	185	40	\vdash		_		_		Х	-	₩	\vdash		Х		X	_	+	\vdash	\vdash	Х		\vdash	$ \vdash$	6. 1. 11.0	266	-13.6	
135.57	180	90			_	Х	(-		-	igspace		X		X		1	\vdash	_	Х		\vdash		Strongly undulating	266	-13.6	
136.47	180	32			_	_			Х		-	igspace		X		Х		1	\vdash		Х		\vdash			266	-13.7	
136.72	175	32						_	Х		 	\sqcup		Х		Х		1-	\vdash		Χ		\sqcup			266	-13.7	igwdown
137.10	340	86							Х		4			Х		Х					Χ					266	-13.7	
137.70	10	82							Х					Х		Х	_			_	Χ					266	-13.7	
138.39	320	90							Х					Х		Х					Χ					266	-13.7	
139.60	25	86							Х					Х		Х					Χ					266	-13.7	
140.65	150	62				Χ	($oldsymbol{ol}}}}}}}}}}}}}}}}$		Х		Х					Χ		Ш			266	-13.7]
140.90	190	54							Х					Х		Х					Χ					266	-13.7	
141.02	190	68							Х					Х		Х					Χ					266	-13.7	

141.40	5	86							Χ				Х		Χ				Χ					266	-13.7		
142.05	10	90							Х			_	Х		Х				Х					266	-13.7		
142.60	40	46	1	Х	-	+		-	~	1			Х		Х	-	+	1	Х	-	-			266	-13.8		
			1	^		+			V	 			_	v			-	\vdash	X			-	+				
142.79	150	72	1			-			X	-			_	Х	Х		-	-			-	-		266	-13.8		
142.86	130	80							Х			_	Х		Χ		_		Χ					266	-13.8		
144.36	150	68							Χ				Х		Χ				Χ					266	-13.8	1	
145.45	155	62							X				Х		Х				Χ					266	-13.8	1	
145.57	140	58							Χ				Χ		Х				Χ					266	-13.8		
145.80	130	66							Х				Х		Χ				Χ					266	-13.8		
148.30			Х																				148.3 148.5m NI / Broken & Friable core	266	-13.8		
149.10	350	86							Х				Х		Х				Х				140.5 140.5 III W / Broken & Thuble core	266	-13.8		
			L			+	1	\vdash	^	 							-					_				├	
149.77	155	70	Χ	Χ									Х		Χ				Χ					266	-13.8		
150.44	160	76							Χ				Х		Χ				Χ					266	-13.8	1	
150.84	30	70		Х									Х		Х				Χ					266	-13.8	1	
150.88	140	90							Χ				Х		Х				Χ					266	-13.8	1	
150.93	320	80		Х									Х		Х				Χ					266	-13.8		
151.20	310	72		Х									Х		Х				Х					266	-13.8		
151.60	150	82		^					Х				Х		Х				X					266	-13.8		
			1	\rightarrow		+	\vdash			+ +							-	\vdash	X	-+						\longrightarrow	
152.09	10	90	1		_	+	\vdash	$\vdash \vdash$	Х		-		Х		Χ	_	-	⊢. -I		-+			1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	266	-13.8	\longrightarrow	
152.56	165	60	1—	Χ		1	\sqcup	oxdot	_				Х			_	_	Χ	Χ				Very rough / pitted / evidence of dissolution, Black argillite	266	-13.8	igwdown	
152.94	20	84		Χ									Х		Χ				Χ				Very rough / pitted / evidence of dissolution, Black argillite	266	-13.8		
153.35	15	90		T			Щ Т		Χ	ШΤ		[Х		Χ	I		L T	Χ	[[266	-13.8	∟ Т	
153.70	140	74		Х									Х		Χ				Χ				Very rough / pitted / evidence of dissolution, Black argillite	266	-13.8		
154.30	350	90	1						Х				Х		Х				Х					266	-13.9		
154.80	355	60							X	t			Х		Х				Х					266	-13.9		
154.90	355	60				+			X	 			Х	_	Х				Х	-				266	-13.9		
			1			+	1			 							-					_				├	
155.12	340	60							Х				Х		Χ				Χ					266	-13.9		
155.90	340	82		Х									Х		Χ				Χ				Very Rough	266	-13.9	1	
156.30	350	90							Χ				Х		Χ				Χ					266	-13.9	1	
157.15	5	86							X				Х		Х				Χ					266	-13.9	1	
159.45	5	90							Х				Х		Х				Χ					266	-13.9		
159.60	120	86							Х				Х		Χ				Χ					266	-13.9	1	
162.05	5	82	1		_	1			X	t - t			X		Х				X					266	-14		
163.48	325	88			_				X	 			X		Х				X					266	-14		
			1			+	1			 		_	_				-					_				├	
163.57	330	86							Х	1			Х		Χ		_		Χ					266	-14		
163.97	15	90				Х							Х		Χ				Χ					266	-14	1	
164.08	5	90				Х							Х		Х				Χ					266	-14	1	
164.55	180	44							Χ				Х		Х				Χ					266	-14	1	
165.00	325	86							Х				Х		Χ				Χ					266	-14		
167.00	60	74							Х				Х		Х				Х					266	-14		
167.68	135	90	1		-	+		_	X	1			Х		Х	-	+	1	Х	-	-			266	-14		
			\vdash			1	\vdash			+				_				$\vdash\vdash$	_	-+						\longmapsto	
168.64	140	80				4—			X	₩.			Х		X		_	igspace	Х				1	266	-14	\longrightarrow	
168.69	140	82				1			Х				Х		Χ	_		ш	Χ					266	-14	igsquare	
171.07	60	78							Χ				Х				Х		Χ				Minor grey calcite	266	-14	ldot	
171.30	310	80	L_ 7	ſ			L I	L	Χ	L_ [[Х		Χ	I ¯		L I	Χ	[¯		<u> </u>	266	-14	∟ Т	1
171.66	315	80							Х				Х		Χ				Χ					266	-14		
172.15	60	90							X				Х				Х		Х				Minor grey calcite	266	-14.1		
172.56	315	90	\vdash			+	\vdash		X	 			X		Х		- ^	\vdash	X	-+	-+			266	-14.1	\vdash	
			\vdash			1	\vdash		X	├				_				$\vdash\vdash$		-+						\longmapsto	
173.00	320	74	-			1	\vdash	\vdash	^	₽			Х	_	Х		_	oxdot	Х				1	266	-14.1	\vdash	
173.40	325	76		Χ		1		oxdot					Х		Χ	_		ш	Χ					266	-14.1	igsquare	
173.44	330	76							Χ				Х		Χ				Χ					266	-14.1		
174.05	320	76							Х				Х		Χ				Χ					266	-14.1	1	
174.86	330	82							Х				Х		Χ				Х					266	-14.1		
	310	70				1			X	1 1			Х		Х				Х	-	-	_		266	-14.1	$\overline{}$	
1/65/		18		-+		Х		\vdash		 			X		X		-	H	X	-+	-+		-	266	-14.1	\vdash	
176.52	100	10	-	 }		^		\vdash	· ·	├				_			-	┝		-+						\vdash	
177.10	180			1	1	1			Х				Х		Χ	_	_	Ш	Χ				1	266	-14.1	igwdown	
177.10 179.77	0	90		\rightarrow					Χ	1		1	Х	1	Х				Χ					266	-14.1	1	
177.10 179.77 180.17	0 350	84																				1 -					
177.10 179.77	0								X				Х		Χ			I	Χ					266	-14.1		
177.10 179.77 180.17	0 350	84											X X		X	-			X		+	+			-14.1 -14.1		
177.10 179.77 180.17 180.75 182.53	0 350 330 45	84 86 86							X X				Χ		Χ				Χ			+		266 266	-14.1		
177.10 179.77 180.17 180.75 182.53 182.97	0 350 330 45 115	84 86 86 76							X X X				X X		X				X					266 266 266	-14.1 -14.1		
177.10 179.77 180.17 180.75 182.53	0 350 330 45	84 86 86							X X				Χ		Χ				Χ					266 266	-14.1		

No. 100 101																										
1853 20 28	186.17	180	88						Х				Χ		Х				Х					266	-14.1	
1853 20 28									х				Χ		Х				х							
17.12 17.15 17.1				t -				1													-					
31.04				v			_	1	-									-					Light brown candy clay coating joints			
32.72 48 72 X							-	1			-	_							_	_						
17.00 17.0							_											_	_	_	_					
				Х																						
192 0 190 48																										
1927 20 20 20 20 20 20 20	192.21	350	38	Х					Х				Χ						X X	(Light brown sandy clay coating joints	266	-14.1	
1925 3 79	192.50	140	48						Х				Х		Х				Х					266	-14.1	
1925 3 79	192.70	330	80	Х					Х				Χ					X :	х х				White calcite & Light brown sandy clay	266	-14.1	
1936 5 78							1	1							Y				_	_	-		G a contract of G			
1942 195 196 196 197				1		-	+	1								-+			_	_	-	+ +				
196.04 190 70 19				ł –	-		-	+			-			-				_	_	_		+ +				
196.74 200				1		_	-	-	-												_					
1991 1995 1996 1996 1996 1997							_												_	_	_					
1996 20		340	70						Х						Х				Х	(266	-14.1	
1992 140 68	199.10	180	90						Х				Χ		X				Х	(266	-14.1	
1995 3 9 1	199.45	20	50						Х				Χ					Χ	Х				Wjite grey calcite	266	-14.1	
1995 3 9 1															Χ											
200.00 24 X							1	1			1 1															
203.21 340 34				x			1	1	-		+	- 1				Y			+	_		+ +	Slight Fe staining			
203.24 340 54					-		-	1			+					^			v v		`	+ +				
203.22 346 56				1		_	-	-												_	_		Light brown, line grained sand infili			
203.24 346 50				<u> </u>		_	_	<u> </u>			4								_	_						
2016 340 70				<u> </u>																						
203.87 345 52																			_	_						
203.87 345 54	203.64	340	70						X				Χ		Х				X	(266	-14.1	1
203.87 345 54	203.69	345	62						Х				Χ					X :	х х					266	-14.1	
205.68 30 42													Χ						х	-)	(Light brown grey clay coating, minor Fe staining			
205.88 140 42				1		_	-	1							×				_	_	`		zigite ziowing. zy ciay coatting, minor i z staming			
205.88 10				1		_	-	+			_							_	_	_						
200.58 195 6.2 X				├			-	1			-	_														
20725 345 40							_		Х						Χ.				^	_	_					
207.56 345 40 X					Х											Х				_	(Slight Fe Staining			
207.60 350 90									Х																	
200.00	207.25	345	40		Х								Χ		Х				Х	(266	-14.1	1
20.55 170 76	207.60	350	90						X				Х		Х				Х	(266	-14.1	
20.55 170 76	209.30	0	90						Х				Χ		Х				Х					266	-14.1	
2019 0 90				t -				1											_	_	_					
221.94				t			_	1										-	_							
213.00				ł –	-		-	+			-			-				_	_			+ +				
213.80 20 72				<u> </u>											Х				_	_						
214.65 215 38																			_	_	(Brown grey clay coating, minor Fe staining			
215.00 210 36	213.80		72						X						Х				Х					266	-14.1	
216.05 15 62 X X X X X X X X X	214.65	215	38						X				Х		Х				Х	(266	-14.1	ı
216.80 30 70	215.00	210	36						Х				Χ		Х				Х					266	-14.1	
216.80 30 70					Х													Х	Х				White calcite			
216.90 135 74							+	1	Х	-	+						-	х	X		1	+				
217.10 340 88				1			1	1			+	- 1			У			-	_	_		+ +				
217.33 330 90				 	_		-	1	^		+					-	-+	-+				++++				
217.92 330 82 X				1	_		-	+	\vdash		+								_	_	-	+				
217.94				<u> </u>	Х	_	_	<u> </u>			4								_							
218.04 330 82 X 1 X X X X Slight oxidation 266 -14.1																										
218.36 310 78 X X X X X X X Slight oxidation 266 -14.1 <td< td=""><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				Х					Х						Х				Х							
218.37 310 76 K X	218.04	330	82		Х					T			Х			Х	T)	(slight oxidation	266	-14.1	
218.37 310 76 K X									Х							Х									-14.1	
218.56 210 82 X							1	T	-		+	-			Х				\top	_	_					
218.92 310 90 X X X X X X Slight oxidation 266 -14.1				l —	\vdash		+	+	-		+	_		_			-	-		_	+	+				
219.70 320 86 X X X X X Slight oxidation 266 -14.1				1	-		-	+			+						-+		+^	_	,	+ +	clight avidation			
219.74 330 90 X X X X X X X X Slight oxidation 266 -14.1 -14.				1	\vdash		-	+			+								+	_	_	+				
219.77 330 90 X				Ь—	$\sqcup \bot$	_	_	1		_	44							_		_	_					
220.44 240 42 X																			┸)	(slight oxidation			
220.58 310 90 X	219.77	330	90	Х					Х	T			Х		Х		T		Х					266	-14.1	
220.58 310 90 X							Х												Х							
220.74 45 78 X X X X X X Trace white calcite 266 -14.1 221.61 120 46 X X X X Leached / pitted - slight Fe staining 266 -14.1							T	T	Х		+	-						=	_		_					
221.61 120 46 X				V	\vdash		+	+			+	_		_	Ĥ		-	v	_	_	-	+	Trace white calcite			-
221.61 120 46 X X X X Leached / pitted - slight Fe staining 266 -14.1 221.90 20 60 X X X X Very light Fe staining 266 -14.1								+	^		+				\vdash			^	×	_	,					
221.90 20 60				├	X		-	1			+	_			Ш				_	_	`	+				
	221.90	20	60						Х				Χ			Х			Х				Very light Fe staining	266	-14.1	

222.05 2	25	52							Χ			Х						Х		Χ					White calcite veining	266	-14.1	
	15	58							Χ				Х		Х	1				Χ						266	-14.1	
	160	70						1 1	Х		1 1		Х			+	1 1			Х					Trace light brown clay smearing	266	-14.1	
	20	58						1 1	X				X		-	+		x	_	Х			+	+		266	-14.1	
				-	_	_		+		-	\vdash			\vdash	_	+	1	^		_			_		White calcite			
	L35	76						1	Х		-		Х		_	4				Χ			_		Minor yellow brown clay coating	266	-14.1	
	L40	78							Χ				Х						Χ	Χ					Minor yellow brown clay coating	266	-14.1	
223.65 12	120	42							Χ				Х		Х					Χ						266	-14.1	
224.00 3	30	82							Χ				Х					Х		Χ					Coarse crystalline calcite	266	-14.1	
224.50 6	60	52							Χ				Х		Х					Χ						266	-14.1	
224.71 14	L45	62							Χ				Х		Х					Х						266	-14.1	
	120	58							Х				Х			1			Х	Х					Trace light brown clay	266	-14.1	
	170	36			_	_	-	+ +	X		\vdash		X	 	Х	+-	+ - 1		_	X			_	+	Trace light brown clay	266	-14.1	
						.,	-	-	٨						_ ^	+			_	^		.,	_	-	1			
	220	40				Х		+			\vdash		Х		_	1	1		Χ			Х	_		Intensely oxidised, pitted - dissolution	266	-14.1	
	L40	62							Χ			Х			Х						Χ				Fe staining / minor clay	266	-14.1	
226.74 1	150	70							Χ				Х			Х					Χ				Slightly leached / dissolution	266	-14.1	
227.84 1	150	72							Χ				Х			Х					Χ				Slightly leached / dissolution	266	-14.1	
227.92 14	L40	80							Χ				Х			Х					Χ				Slightly leached / dissolution	266	-14.1	
	210	60	Х	Х									Х		Х				t	Х						266	-14.1	
	45	86			-	+	1-	\vdash	Х		\vdash		X	\vdash	X	+	+		-+	X		1	+	1	1	266	-14.1	-
	30	90		-+		+	1	+	X	H	\vdash		X	\vdash	X	1-	+		-+	X		-	+	1	 	266	-14.1	
					-+	-1	1	\vdash			\vdash		^	\vdash	_ X	1-	+			^		1	1-	1	Classifile describe 10 and soids			\vdash
	50	80	$\vdash \vdash$			4—	1	+	Х	<u> </u>	ш	Х	4—	\vdash	-	4—	+		Х		Χ	<u> </u>	4—	1	Clay filled cavity 10cm wide	266	-14.1	
	50	80							Χ			Χ				1			Χ		Χ	<u> </u>			Clay filled cavity 10cm wide	266	-14.1	
229.90 14	L45	42							Χ				Х						Χ	Χ					Minor grey brown clay	266	-14.1	
230.20 3:	310	82							Χ				Х						Χ		Χ				Slightly leached with grey / brown clay	266	-14.1	
230.36 33	310	90							Χ				Х						Χ		Χ				Slightly leached with grey / brown clay	266	-14.1	
	230	76	Х										Х		1						Х				Axial parallel / broken int angular elongate fragments	266	-14.1	
	310	90	_^					1 1	Х				X		-	+			Х		X		+	+	Slightly leached grey sandy clay coating	266	-14.1	
						_		+ +			1			 	_	1	1 1						-					
	35	72						1	Х				Х	<u> </u>		4			Χ		Χ				Slightly leached grey clay coating	266	-14.1	
	L60	82							Χ				Х		Х	1				Χ						266	-14.1	
232.17 14	L45	66							Χ																			
													Х		Х					Χ						266	-14.1	
	170	53					1		Х				X		X					X			-			266 266	-14.1 -14.1	
232.22 17							F			Х					_			Х		_			+		White calcite vein, vertical striae			
232.22 13 232.80 34	L70 B45	53 88	Х							Х			X		_			Х		Χ						266 266	-14.1	
232.22 17 232.80 34 233.20 5	170 345 55	53 88 68	Х						X	Х			X X X		Х			Х	Х	X X X					White calcite vein, vertical striae Coarse brown grey sand	266 266 266	-14.1 -14.1 -14.1	
232.22 17 232.80 34 233.20 5 233.34 27	170 345 55 210	53 88 68 70							X X X	Х			X		_			X	Х	X X X					Coarse brown grey sand	266 266 266 266	-14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 34 233.20 5 233.34 2: 233.40 34	170 345 55 210 340	53 88 68 70 58	X						X X X	х		Х	X X X		Х			X	X	X X X X					Coarse brown grey sand fine grained briwn / grey sand	266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 34 233.20 5 233.34 2: 233.40 34 233.56 5	170 345 55 210 340 50	53 88 68 70 58 82							X X X	X		X	X X X X		Х				X X X	X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating	266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 34 233.20 5 233.34 2: 233.40 34 233.56 5 233.70 3:	170 345 55 210 340 50 310	53 88 68 70 58 82	Х			X			X X X	X		X	X X X X		Х			X	X X X	X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating	266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5 233.34 2: 233.40 3- 233.56 5 233.70 3: 233.90 1:	170 345 55 210 340 50 310 180	53 88 68 70 58 82 82 88	X			Х			X X X	X		X	X X X X X		Х				X X X X	X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating	266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5 233.34 2: 233.40 3- 233.56 5 233.70 3: 233.90 1:	170 345 55 210 340 50 310	53 88 68 70 58 82	Х						X X X	X		X	X X X X		Х				X X X X	X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating	266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 34 233.20 5 233.34 2: 233.40 34 233.56 233.70 3: 233.90 11 134.10 13	170 845 55 210 340 50 310 180	53 88 68 70 58 82 82 88 86	X			Х			X X X	X		X	X X X X X		Х				X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating	266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 34 233.20 5 233.34 2: 233.40 34 233.56 5 233.70 3: 233.90 11 134.10 14 234.36 10	170 345 55 210 340 50 310 180 180	53 88 68 70 58 82 82 88 86 70	X			X			X X X X	X		X	X X X X X X X X		X				X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor clayey sand	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.40 3- 233.56 5- 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.48 3-	170 345 55 210 3840 50 310 180 180 160 345 3	53 88 68 70 58 82 82 88 86 70	X X X			X			X X X X	X		X	X		Х				X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5 233.34 2: 233.34 2: 233.56 5 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.48 3- 234.96 1:	170 1845 1855 1956 185	53 88 68 70 58 82 82 88 86 70 42 64	X X X			X			X X X X X	X		X	X		X				X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor clayey sand	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.56 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.48 3: 234.96 1: 234.96 1:	170 1845 1855 1956 1840 1840 1840 1840 1840 1840 1840 1840 1840 1845 1860 1845 1860 185	53 88 68 70 58 82 82 88 86 70 42 64	X X X			X			X X X X X	X		X	X		X X X				X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.36 5: 233.70 3: 233.90 1: 234.36 1: 234.36 1: 234.48 3: 234.96 1: 235.03 3: 235.08 6:	170 1845 185	53 88 68 70 58 82 82 82 88 86 70 42 64 78	X X X X X			X			X X X X X X	X		X	X		X X X X				X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.34 3- 233.56 5- 233.70 3: 233.90 1i 234.36 1i 234.36 1i 234.36 1i 234.38 3- 234.96 1i 235.08 (6) 235.19 1:	170 345 55 210 340 50 310 180 180 160 345 160 350 0 150 150	53 88 68 70 58 82 82 88 86 70 42 64 78 60	X X X X X X			X			X X X X X	X		X	X		X X X X X				X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.34 3- 233.56 5- 233.70 3: 233.90 1: 134.10 1: 234.48 3- 234.96 1: 235.03 3: 235.08 (c) 235.09 1: 235.26 1:	170 345 55 210 340 50 310 180 180 160 345 160 350 0 150 180	53 88 68 70 58 82 82 82 87 70 42 64 78	X X X X X	X		X			X X X X X X	X		X	X		X X X X				X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.34 3- 233.56 5- 233.70 3: 233.90 1: 134.10 1: 234.48 3- 234.96 1: 235.03 3: 235.08 (c) 235.09 1: 235.26 1:	170 345 55 210 340 50 310 180 180 160 345 160 350 0 150 150	53 88 68 70 58 82 82 88 86 70 42 64 78 60	X X X X X X	X X		X			X X X X X X	X		X	X		X X X X X				X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.34 2: 233.40 3- 233.56 5- 233.70 3: 233.90 11 134.10 14 234.36 11 234.36 11 234.36 12 235.03 3: 235.08 0 235.19 1: 235.25 11	170 345 55 210 340 50 310 180 180 160 345 160 350 0 150 180 180 180 180 180 180 180 18	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50	X X X X X X			X			X X X X X X	X		X	X		X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane Trace clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.30 3: 233.56 5: 233.70 3: 233.90 1: 234.36 1: 234.36 1: 234.36 1: 234.36 1: 235.03 3: 235.08 6: 235.19 1: 235.26 1: 235.31 1: 235.65 2:	170 345 55 210 340 50 310 180 180 160 345 160 345 160 150 150 180 155 230	53 88 68 70 58 82 82 82 88 86 70 42 64 78 60 72 50 48	X X X X X X			X			X X X X X X X X X X X X X X X X X X X	X		X	X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.34 3- 233.56 5- 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 234.36 1: 235.03 3: 235.03 1: 235.03 1: 235.05 1: 235.06 1: 235.06 1: 235.05 1:	170 345 55 210 340 50 310 180 180 160 345 160 150 180 155 1230 175 1	53 88 68 70 58 82 82 88 70 42 64 72 50 48 86 70 42 64	X X X X X X			X X X			X X X X X X	X		X	X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.40 3- 233.56 5- 233.70 3: 233.90 1: 234.36 1: 234.48 3- 234.96 1: 235.08 (235.19 1: 235.26 1: 235.26 1: 235.26 1: 235.26 1: 235.31 1: 235.85 1: 235.85 1:	170 845 55 210 340 50 180 180 180 180 180 180 180 18	53 88 68 70 58 82 82 88 67 42 64 78 60 72 50 48 32 64 75	x x x x x x x x x x x x x x x x x x x			X			X X X X X X X X X X X X X X X X X X X	X		X	X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 235.03 3: 235.08 (0: 235.19 1: 235.26 1: 235.31 1: 235.65 2: 235.80 1: 235.80 7: 235.80 7: 235.80 7: 235.80 7:	170 170 1845 1845 1845 1955 1910 1840 1840 1850 1880 1880 1880 1880 1880 1880 188	53 88 68 70 58 82 82 82 88 86 70 42 64 78 60 72 50 48 32 64	x x x x x x x x x x x x x x x x x x x			X X X			X X X X X X X X X X X X X X X X X X X	X		X	X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Minor grey clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.96 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.08 1: 235.08 1: 235.08 1: 235.31 1: 235.31 1: 235.35 1: 235.37 1: 235.38 1:	170 345 55 510 180 180 180 180 180 180 180 1	53 88 68 70 58 82 82 82 84 70 42 64 78 60 72 50 48 32 64 75 64 75	x x x x x x x x x x x x x x x x x x x			X X X			X X X X X X X X X X X X X X X X X X X	X		X	X X X X X X X X X X X X X X X X X X X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.96 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.08 1: 235.08 1: 235.08 1: 235.31 1: 235.31 1: 235.35 1: 235.37 1: 235.38 1:	170 170 1845 1845 1845 1955 1910 1840 1840 1850 1880 1880 1880 1880 1880 1880 188	53 88 68 70 58 82 82 82 88 86 70 42 64 78 60 72 50 48 32 64	x x x x x x x x x x x x x x x x x x x			X X X			X X X X X X X X X X X X X X X X X X X	X		X	X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Minor grey clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.30 1: 233.30 1: 233.30 1: 234.36 1: 234.36 1: 234.36 1: 234.36 1: 235.36 3: 235.08 6: 235.19 1: 235.26 1: 235.31 1: 235.35 1: 235.36 1: 235.37 1: 236.30 7: 236.30 5: 236.37 3:	170 170 1845 1845 1845 1846 1846 1846 1846 1846 1846 1846 1846	53 88 68 70 58 82 82 88 86 70 42 64 72 50 48 32 64 75 64	x x x x x x x x x x x x x x x x x x x			X X X			X X X X X X X X X X X X X X X X X X X	X		X	X X X X X X X X X X X X X X X X X X X		X X X X X X X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X					Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Minor grey clay Minor grey clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3- 233.20 5- 233.34 2: 233.40 3- 233.56 5- 233.70 3: 233.90 1i 134.10 1i 234.36 1i 234.36 1i 234.48 3- 235.03 3: 235.03 1: 235.06 1i 235.06 1i 235.08 1i 235.08 1i 235.08 1i 235.08 1i 235.08 1i 235.08 1i 235.09 1i 235.06 1i 235.31 1i 235.26 1i 235.31 1i 235.31 1i 235.36 1i 235.31 1i	170 170 1845 1855 1910 1955 1910 1955 19	53 88 68 70 58 82 82 88 86 70 42 64 72 50 48 32 64 75 64 75	x x x x x x x x x x x x x x x x x x x	X		X X X			X X X X X X X X X X X X X X X X X X X	X			X X X X X X X X X X X X X X X X X X X		X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X			x		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.03 3: 235.08 (0 235.19 1: 235.03 1: 235.26 1: 235.31 1: 235.65 2: 235.80 1: 235.80 1: 235.80 1: 235.80 3:	170 1445 1555 1555 1440 1550 150 160 160 160 160 160 160 160 16	53 88 68 70 58 82 82 82 88 86 70 42 64 78 60 72 50 48 32 64 75 64 75 64 78 88	x x x x x x x x x x x x x x x x x x x	X		X X X			X X X X X X X X X X X X X X X X X X X	X		X	X X X X X X X X X X X X X X X X X X X		X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Minor grey clay Minor grey clay	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.96 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.08 1: 235.08 1: 235.08 1: 235.08 1: 235.26 1: 235.26 1: 235.26 1: 235.27 1: 235.26 1: 235.37 1: 235.37 1: 236.30 5: 236.37 3: 236.37 3: 236.37 3: 236.37 3: 236.37 3:	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 82 82 82 83 86 70 42 64 78 60 72 50 48 32 64 75 64 75 64 75 64 75 64 75 64 76 76 76 76 76 76 76 76 76 76 76 76 76	x x x x x x x x x x x x x x x x x x x	X		X X X			X X X X X X X X X X X X X X X X X X X	X			X X X X X X X X X X X X X X X X X X X		X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.30 1: 233.30 1: 233.30 1: 234.36 1: 234.36 1: 234.36 1: 234.36 1: 235.38 1: 235.08 1: 235.26 1: 235.26 1: 235.30 1: 235.30 1: 235.31	170 1445 1555 1555 1440 1550 150 160 160 160 160 160 160 160 16	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50 64 75 64 75 64 78 38 64 76 64	X X X X X X X X X X	X		X X X			x x x x x x x x x x x x x x x x x x x	X			X X X X X X X X X X X X X X X X X X X		X				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3. 233.20 5: 233.34 2: 233.34 2: 233.40 3. 233.56 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.96 1: 235.03 3: 235.08 0: 235.19 1: 235.26 1: 235.27 235.20 7:	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50 48 32 64 75 64 75 64 78 64 75 64 78 64 78 64 78 64 78 64 78 64 78 78 78 78 78 78 78 78 78 78 78 78 78	x x x x x x x x x x x x x x x x x x x	X		X X X			X X X X X X X X X X X X X X X X X X X	X			X X X X X X X X X X X X X X X X X X X		X				x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity No Invert marked	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.03 3: 235.08 (0 235.19 1: 235.03 1: 235.26 1: 235.31 1: 235.65 2: 235.80 1: 235.80	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50 64 75 64 75 64 78 38 64 76 64	X X X X X X X X X X	X		X X X			x x x x x x x x x x x x x x x x x x x	X			X X X X X X X X X X X X X X X X X X X		X				x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3. 233.20 5: 233.34 2: 233.34 2: 233.40 3. 233.56 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.96 1: 235.03 3: 235.08 0: 235.19 1: 235.26 1: 235.27 235.20 7:	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50 48 32 64 75 64 75 64 78 64 75 64 78 64 78 64 78 64 78 64 78 64 78 78 78 78 78 78 78 78 78 78 78 78 78	X X X X X X X X X X	X		X X X			x x x x x x x x x x x x x x x x x x x	X			X X X X X X X X X X X X X X X X X X X		X				x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X			X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity No Invert marked	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.90 1: 134.10 1: 234.36 1: 234.36 1: 234.36 1: 235.03 3: 235.08 (0 235.19 1: 235.03 1: 235.26 1: 235.31 1: 235.65 2: 235.80 1: 235.80	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 88 86 70 42 64 78 60 72 50 48 32 64 75 64 75 64 78 64 75 64 78 64 78 64 78 64 78 64 78 64 78 78 78 78 78 78 78 78 78 78 78 78 78	X	X		X X X			x x x x x x x x x x x x x x x x x x x	X			X X X X X X X X X X X X X X X X X X X		X	X			x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X	X		X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor sand coating Minor sand coating Minor sand coating Minor clayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity No Invert marked No Invert marked 240.0 - 240.2m Rubble recovered	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	
232.22 1: 232.80 3: 233.20 5: 233.34 2: 233.34 2: 233.36 5: 233.70 3: 233.36 10: 234.36 10: 234.36 10: 234.36 10: 235.08 0: 235.19 11: 235.26 11: 235.26 11: 235.37 12: 235.26 13: 235.88 0: 235.89 12: 235.80 12: 235.81 12	170 170 1845 1855 180 180 180 180 180 180 180 180	53 88 68 70 58 82 82 82 82 88 86 70 42 64 73 60 72 50 48 32 64 75 64 75 64 78 54 78 64 78 64 78 64 78 64 78 64 78 64 78 78 78 78 78 78 78 78 78 78 78 78 78	X	X		X X X			X X X X X X X X X X X X X X X X X X X	X			X X X X X X X X X X X X X X X X X X X		X	X			x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X	X		X		Coarse brown grey sand fine grained briwn / grey sand Minor sand coating Minor cayey sand Curved / arcuate joint plane Trace clay Light brown clay coating Soft grey brown clay Soft grey brown clay Minor grey clay Minor grey clay Minor grey clay Minor grey clay Fine sand infill & bright orange Fe staining Upper contact of a cavity No Invert marked No Invert marked	266 266 266 266 266 266 266 266 266 266	-14.1 -14.1	

20.11 1.50 70 70 70 70 70 70 70																													
23.72 23.72	242.15	150	90								Х				Х			Х					Χ			Slight Oxidation, fine sand	266	-14.1	
23.72 23.72	242.45	35	52								Х				Х			Х					Х			Slight Oxidation	266	-14.1	
2006 100	242.70	320	88								Х				Х						Х	Х				Yellow brown clay coating joint surface	266	-14.1	
3450. 22 9 6											_							1											
March Marc											_	_						+			^					Tellow brown day couting joint surface			
34.55 37.0 58.0											_	-	-			 	_ ^	+	-		· ·	^	٧.		-	Cli-bab : di d - : tab b			
24.14 1.0 1.												_					_	+											
24.5 0 0 10																													
34.75 50 64											Х							1			Χ								
24.75 19 10								Χ												X			Χ			Black argillite caoting , undulating and axial paraleel			
20.70	244.76	50	66								Χ				Х			Х						Х		Bright orange oxidation	266	-14.1	
23.50 95 78	245.35	10	10								Х				Х						Χ		Χ			Orange brown sand coating surface, leached contact	266	-14.1	
28.05 30 30 30 4 4 4 5 4 5 5 4 5 5	247.70	0	28								Х				Х		Х					Χ					266	-14.1	
23.05 39 30	247.90	95	78					Χ							Х			Х					Χ			Slight oxidation	266	-14.1	
2600 315 90 N	248.05	310									х							Х					Х						
289.5 300 90 X											_							Ť			X								
285 70				~							_	_						+			^	v	^			Orange brown sandy citaly coating			
250 25 78				^		1					_	_	-			 	_ ^	1			.,								
23.50 34.5 52 X											Х						_	1											
294.11 0 90								Х	ļ				1					1	1	L									
294.71 0 90 0 0 0 0 0 0 0				Х							_			_		lacksquare		1			Χ				_	coarse yellow brown sand infill			
294.94 360 78																													
254.5 160 78	254.11	0	90]	$oxed{oxed}$]		Χ				Х		Х			T		Χ]				266	-14.1	
255.30	254.70	140	48								Х				Х		Х					Χ					266	-14.1	
255.30	254.94	160	78								Х				Χ			Х					Χ			Weak Fe staining	266	-14.1	
255.33				Х	Х		1					1					1									<u> </u>			
255.51											х	\top					+	† ·			X	X				9			
256.10		230		~							_	_						+			^	^	v						
256.57				^				· ·			^	-	-			 	_ ^	+	-		· ·	٧.	^		-				
256.0								Χ			.,	_	-			-		+			Х					•			
25.70											_						_												
257.00											_						_	1											
257.90											Х						_									No Invert Marked			
ST 20				Χ																						No Invert Marked - Polished			
288.75	257.60		90	Х					Χ						Х		Х					Χ				No Invert Marked - Polished and undulating	266	-14.1	
1987 1988	257.90		90	Х					Χ						Х		Х					Χ				No Invert Marked	266	-14.1	
1990 1990	258.50		45								Х				Х		Х					Χ				No Invert Marked	266	-14.1	
1990 1990											_										Х								
Section Sect									Y								×	1											
260.70		100									v	_					_	+			-					No invere warked Signery poistica			
260.70												-	-			 		+			-				-				
260.84 150 78											_					-	_ X		-		.,				_	100			
26.84 150 78 78 78 78 78 78 78 7											Х							1			_					Minor clay			
261.30				Х				Х									_	1											
170 56											Х						Х					Χ					266		
262.94 340 86		170									Χ				Х				Х			Χ				Coarse sand		-14.1	
263.15	261.42	170	56						T		Х	Ī			Х		Х					Х					266	-14.1	
263.15	262.94	340									Х						Х					Χ					266	-14.1	
263.45 165 18 I X		195	80								Х				Х		Х					Χ						-14.1	
263.95 340 84								Х								t t	1	Х						Х					
264.20 340 74 1 1 X 1 X											x	-				l	У	Ť				x		^		 			
265.07 310 84 X Image: Control of the control of t																 	_	1		\vdash						+			
265.48 210 66				.,								-	+			\vdash	X	.,	1			٨				Climbah, puidopal			
266.09 210 70 1 X				X		\vdash					_		+	.,	X	 	-	_ X	—										
266.35 305 72 1 1 X 1				<u> </u>	<u> </u>			<u> </u>			_			Х	4	lacksquare	4—	1	Х	 			Χ			Coarse sand infill / ribble			
266.44 55 </td <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>lacksquare</td> <td>_</td> <td>1</td> <td><u> </u></td> <td></td>					<u> </u>						_					lacksquare	_	1	<u> </u>										
266.62 75 </td <td>266.35</td> <td>305</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td>Χ</td> <td></td> <td></td> <td></td> <td></td> <td>266</td> <td>-14.1</td> <td></td>	266.35	305									Х				Х		Х					Χ					266	-14.1	
267.05 50 72 1 X<		T			L	╚	T	╚	T	T	Χ	\perp			Х	LL_T	\perp	\perp	Х	oxdot	T	Х			T	No Invert Marked - Coarse sand			
267.05 50 72 1 X<											Х								Χ			Χ							
267.15 40 662 1 X 1 X		50							1		_						Х												
267.75 250 18 X							l				_	\vdash					Ť	1	х	Х						Grey calcite & coarse brown sand			
267.96 60 X </td <td></td> <td> </td> <td>+</td> <td>1</td> <td></td> <td>^</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																 	+	1		^									
268.04 65 X X X X X X No Invert Marked 266 -14.1 268.50 X X X X X 268.5 - 268.65m Coarse Rubble 266 -14.1 268.65 45 X X X X X No Invert Marked 266 -14.1		230						\vdash					1-1			 	- ,.	+	^	\vdash									
268.50 X X X X X X 268.5 - 268.65m Coarse Rubble 266 -14.1 268.65 45 X X X X X X No Invert Marked 266 -14.1								<u> </u>				_	1			⊢ ⊢	_	1	1	<u> </u>									
268.65 45 X X X X X X X No Invert Marked 266 -14.1			65	<u> </u>	<u> </u>			<u> </u>			Х						Х	1	 										
				Х	<u> </u>											lacksquare	4	1	<u> </u>										
268.79 45 X X X X No Invert Marked 266 -14.1	268.65										_						_												
											.,							1								last a second of			

269.00		85	Х				Х			Х	Х		Χ			No Invert Marked - Conjugate Jointing	266	-14.1	
269.00		75			Χ					Х	Х		Χ			No Invert Marked - Conjugate Jointing	266	-14.1	
269.52	140	76					Χ			Χ	Χ		Χ				266	-14.1	
269.75	90	48					Х			Χ	Χ		Χ				266	-14.1	
270.15	310	30					Χ			Х	Х		Χ				266	-14.1	
271.54	180	82					Х			Х	Х		Χ				266	-14.1	

		PROJ	ECT N	NAM	E La	ackagh Q	uarry	7																		REPORT NO:
		CLIEN	NT: (Glawa	y Cou	inty Counc	il																			HOLE NO: BH-04
		ENGI	NEER	: AR	UP																					LOGGED BY: Dave Blaney
(m	xis					Ro	ughr	iess				1	Apertui	·e				Filli	ng			We	athe	ring		
of Discontinuity (m BGL)	Orient.to Short Core Axis	Intact? (NI)	S	tepp	ed	Undula			Planar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining			Clay	No	S	Mod	High	Comp	Comments
Depth of	Orient.to	Non	R	Sm	St	R Sn	ı Sı	t F	R Sm St	ō	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	D	Sta	%	W %	C	Į		N	H	ŭ	
5.30	20							2	x				X							X	X					Grey brown soft clay
5.40	20							2	x				X							X	X					Grey brown soft clay
5.60	50							2	x				X							X	x					Grey brown soft clay
5.70	80					x							X							X	X					Grey brown soft clay
6.35	10					X							X							X	X					Grey brown soft clay
6.40	90							2	x					X						X	X					Minor clay smeared on fracture surface
6.70	90							7	x					X						X	X					Minor clay smeared on fracture surface
6.50	15					X							X			X					X					
6.68	35					x							X			X					x					
6.95	85							2	x				X							X	X					Minor br/gy clay smeared on fracture surface
7.02	5							2	x				X			X					x					
7.37	15							2	x				X			X					X					
7.54	15							2	x				X			X					X					
7.73	75					x							X			X					X					
7.75	80					x							X							X	x					Stiff / Firm br/gy clay 1mm aperture
7.86	10							2	x				X			X					X					
8.20	10					x							X			X					X					
8.70	70					x							X			X					x					
8.90	80					x							X							X	X					Firm gy/br clay 2mm aperture
8.95	5					x							X							X	X					Minor gy/br clay smearing fract. Surface
9.05	80					X							X							X	X					Firm gy/br clay 1mm aperture
9.10	10					X							X							X	X					
9.16	80					X							X							X	X					
9.24	55	1				X				1			X			x					X					
9.72	85					X							X							X	X					
9.33	85	1				X				1			X							X	X					
9.40	50	1				X				1			X			Х					X					
9.50	85	1						2	х				X							X	X				_	Minor light grey clay smearing
10.00	80					X							X							X	х					Minor light grey clay smearing
10.50	80					X							X							X	X					Locallised small smears of light grey clay
10.87	5							2	X				X			X					X					
11.06	80					X							X			X					X					
11.30	60	1				X							X			X					Х					
11.60	45							2	X			1	X			X					X					

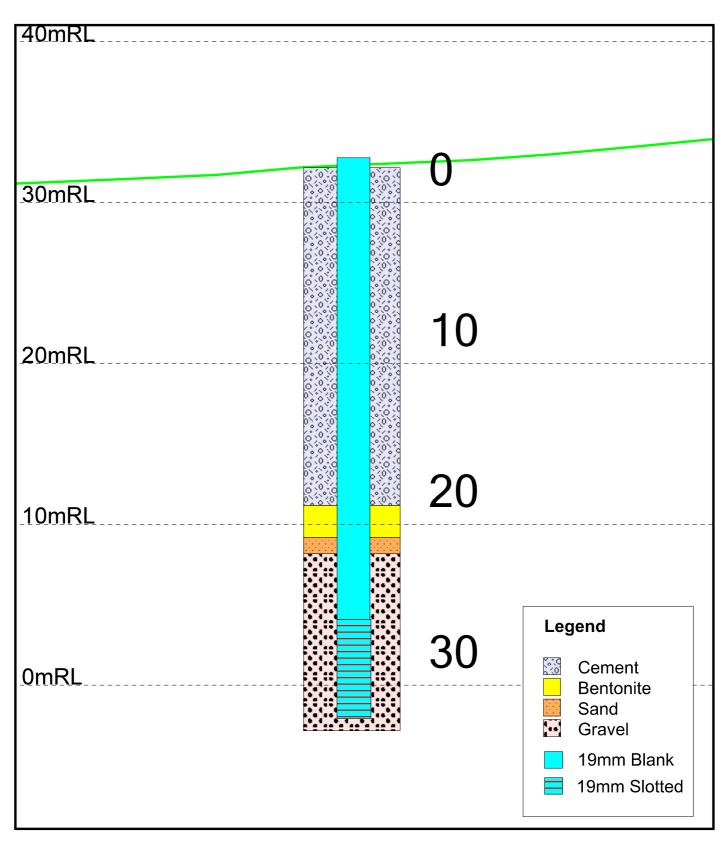
		PROJ	ECT N	NAME	La	ickagh	Qua	arry																			REPORT NO:	
		CLIEN	NT: (Glaway	Cou	nty Cou	ıncil																				HOLE NO:	H-04
		ENGI	NEER	: ARU	P																						LOGGED BY:	ave Blaney
' (m	Axis					1	Rou	ghne	ess				1	Apertur	·e				Fillin	g			We	athe	ring			
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Non Intact? (NI)	S	teppe	ed	Und	ulat	ting	Plai	ıar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	No	SI	Mod	High	Comp	Com	ments
Depth of]	Orient.to	Non]	R	Sm	St	R	Sm	St	R Sr	n St	Ö	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	כ	Stai	%	W %	Ö	_	3 2	Σ	Н	2		
11.63	5	X							X					X			X					X						
11.79	45								X					X			х					X						
11.80	5	X							X					X			Х					X						
11.97	15					x								X			X					X						
12.50	60								X					X						X		X					White / grey calcite co	pating
12.51	15								X					X			X					X						
12.92	15					X								X			X					X						
14.40	10					X								X			X					X						
15.14	10					X								X			X					X						
15.90	70								X					X							X	X					Minor light grey clay	smearing fract. Surface
16.38	10					X							X				X						X				Minor etching / pitting	g on fract. Surface
16.55	70					X								X			X					X						
16.77	5					X								X			X					X						
17.05	10					X								X			X					X					Strongly undulating -	2
17.40	10					X							X								X	X					Orange / brown clay is	
17.50	80					X								X							X		X				Minor clay and localli	sed Fe. staining
17.60	45	X							X					X			X					X						
17.65	70	X							X					X			X					X						
18.77	10								X					X			X					X						
19.93	25					x						X					X					X						
20.98	10								X	1				X			X					X						
21.85	60					x								X			X					X						
22.05	20					х							X				X					X						
22.15	40								X					X			X					X						
22.35	10								X					X			X					X						
23.10	10								X	1				X			X					<u> </u>	X				Slight Fe Staining	
23.13	0								X					X			X					X						
23.62	5								X	1				X			X					X						
24.17	20								X	1				X			X					X						
24.98	5					X								X			X					X						
25.16	10					х							X				X					<u> </u>	X				Slight Fe Staining	
25.58	10								X					X			X					X						
25.80	10								X					X			X					X						

		PROJI	ECT N	AME	Lac	ckagl	h Quarr	y																			REPORT NO:	
		CLIEN	T: G	laway	Coun	ıty Co	ouncil																				HOLE NO:	BH-04
		ENGI	NEER:	ARUI	P																						LOGGED BY:	Dave Blaney
(m	xis						Rough	ness						Apertur	e				Fillin	ıg			We	athei	ring			
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Non Intact? (NI)	St	epped	d		dulatin		Pla	ınar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	No	S	Mod	High	Comp	C	omments
Depth of	Orient.to	Non	R	Sm	St	R	Sm S	t F	R S	m St	Ō	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	כ	Sta	%	W %	S	I		2	Н	C		
26.52	5					х								х			х					х						
26.70	75							2	x					X							х	х					Fine smear of light	brown clay
26.72	20	Х						2	x					X			X					X						
26.96	5					X								X			Х					X						
27.06	60	X						2	x					X			Х					X						
27.09	15	X						2	x					X			X					X						
27.13	10	x						2	X					X			X					X						
27.18	60	x						2	X					X			X					X						
27.53	5							2	X					X			X					X						
27.84	5					X								X			X					X						
27.87	5							2	X					X			X					X						
27.98	5							2	X					X			X					X						
28.25	5							2	X					X							X	X					Trace light grey cla	y coating
28.55	50							2	x					X			X					X						
28.90						X						X									X		X				37cm wide void - r	ninor clay / slight oxidat.
29.77	5							2	X					X			X					X						
29.94	5							2	X					X			X					X						
30.10	5							2	X					X			X					X						
30.63	15					X								X							X	X					Minor light brown	
30.69	5							2	x					X							X	X					Minor light brown	clay smearing
30.92	10					X		\perp	4					X			X					X						
31.43	10					X		\perp	4					X							X	X					Minor light brown	
31.60	5					X		\perp	4					X							X	X					Minor light brown	clay smearing
32.47	20								X					X			X					X						
32.90	5								X					X			X					X						
33.94	10	X						_	X					X			X					X						
34.00	85							_	X					X			X					X						
34.04	10	X						_	X					X			X					X						
34.30	10	X						_	X					X			X					X						
34.52	75							2	X					X			X					X						
34.57	15	X						_	x					X			X					X						
34.96	15							2	X					X			X					X						

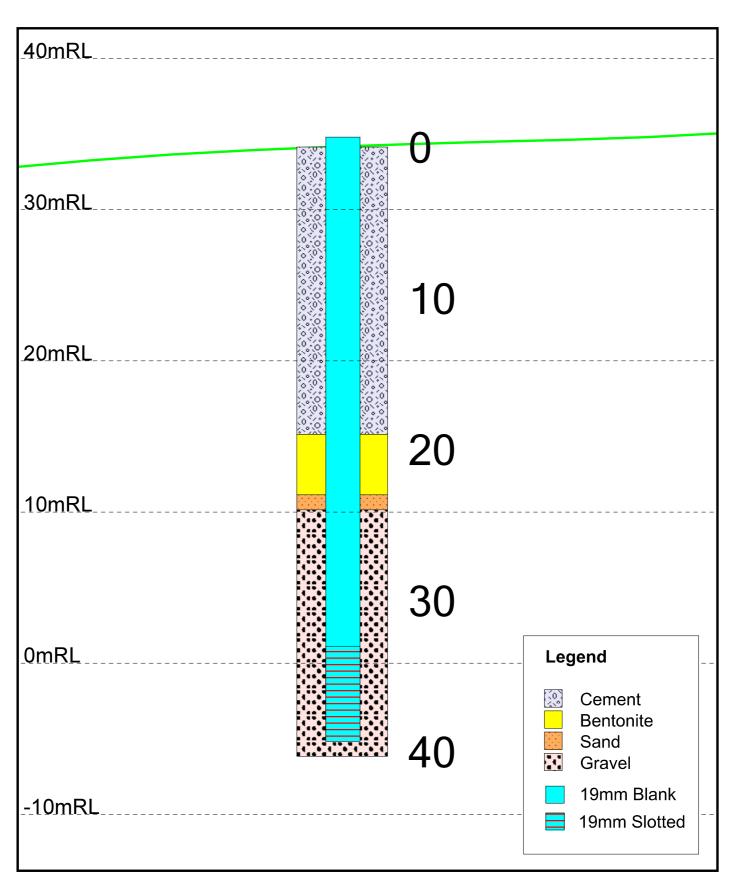
		PROJ	ECT I	NAM	Œ	Lack	agh Qu	uarry	7																		REPORT NO:
		CLIE	NT: (Galw	ay C	ounty	Counci	il																			HOLE NO: BH-05
		ENGI	NEER	R: AF	RUP																						LOGGED BY: Dave Blaney
<u>m</u>	xis						Rot	ughi	iess					Apertu	re				Fillir	ng			We	athe	ring		
of Discontinuity (m BGL)	Orient.to Short Core Axis	Intact? (NI)	s	Stepp	ped	1	Undula	ating	5	Planar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	x	SI	Mod	High	Comp	Comments
Depth of	Orient.to	Non	R	Sn	n S	St I	R Sm	S	t F	R Sm St	ō	>10 m	m 2.5-10	0.5-2.5	0.1-0.5	<0.1	כ	Sta	%	W %	S			×	H	Ċ	
0.52	5	X				3	X							X			X					X					
0.60	5						X							X			X					X					
0.63	85								2	X				X						X		X					White / brown crystalline calcite
0.63	85								2	X				X			X					X					
0.68	5					3	X							X			X					X					
0.75	5	X							2	X				X			X					X					
0.84	5	X							2	K				X			X					X					
0.90	5								2	K				X			X					X					
1.31	15								2	K				X							X	X					Pale brown clay smearing fract. Surface
1.37	10	X				3	X							X							X	X					Pale brown clay smearing fract. Surface
1.40	10	X				3	X							X							X	X					Pale brown clay smearing fract. Surface
1.50	85	X							2	X .				X							X	X					Pale brown clay smearing fract. Surface
1.66	5					2	X							X							X	X					Pale brown clay smearing fract. Surface
1.83	85	X							2	X .				X			X					X					
2.13	10								2	X				X			X					X					
2.22	20		X											X			X					X					
2.42	5								2					X			X					X					
2.47	10								2					X			X					X					
2.57	10								2					X			X					X					
2.64	5								2					X			X					X					
2.70	10	1							2	X				X			X			1		X					
2.77	20	1]	X							X			X			1		X					
2.82	5				-			1	2					X			X			1		X					
2.99	15	-			_				2	ζ				X	1		X			1		X					
3.07	10	-			_		X							X	1		X			1		X					
3.20	10	-			_				2					X	1		X			1		X					
3.27	20	1						-	2	X .				X	1		X			-		X					
3.50	85	1					X	-						X	1		X			-		X					Minor fine gr. Sand coating fract. Surface
3.45	15	X					X							X			X			-		X					
3.62	20	X]	X	-		ζ .				X			X			-		X					
4.02	15	1						-		X .				X	1		X			-		X					
4.10	85	1						-		X .				X						-	X			X			Fine sandy clay coating & weak Fe staining
4.10	85	1						-		Υ .				X	1		L			-	X	L.		X			Joints are sub-parallel c.2-3cm apart
4.16	5								7	K				X			X					X					

		PROJ	ECT I	NAMI	E La	ackagh Qu	ıarr	y																		REPORT NO:
		CLIEN	NT: (Galwa	y Cou	nty Counci	il																			HOLE NO: BH-05
		ENGI	NEER	: ARI	UP																					LOGGED BY: Dave Blaney
(m	xis					Rot	ughi	ness					Apertur	e				Fillin	ıg			Wea	athei	ring		
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Non Intact? (NI)	s	stepp	ed	Undula	ting	g I	Planar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	×	S	Mod	High	Comp	Comments
Depth of	Orient.to	Non	R	Sm	St	R Sm	s	t R	Sm St	Ō	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	C	Sta	%	W %	C			2	Н	ŭ	
4.25	5	X						X					X			X					Х					
4.50	5	X						X					X			X					X					
4.73	5	X						X					X			X					X					
4.60	85							X					X							X			X			Fine sandy clay coating & weak Fe staining
4.60	85							X					X							X			X			Fine sandy clay coating & weak Fe staining. Joints are parallel and 2cm apart
4.74	5	X						X					X			X					Х					Johns are paramer and zern apart
4.83	5	X						X					X			X					X					
3.85-8.0	85-90							X					X						X	Х			X			Fine sandy clay coating & Fe staining. Fracture is are axial parallel and continue for 4.15m. From 6.5m white calcite deposited on fracture surface. 7.0-7.65m firm brown/grey clay infill - aparture up to 4mm wide
4.97	5	X						X					X			X					X					
5.07	10	X						X					X							X	X					Minor clay coating fracture surface
5.13	20	X						X					X							X	X					Minor clay coating fracture surface
5.20	75	X						X					X			X					X					Conjugate with vertical joint
5.16	10	X						X					X			X					X					
5.61	20	X				X							X			X					X					
5.73	10	X						X					X			X					Χ					
5.80	5	X						X					X			X					X					
5.97	5	X						X					X			X					Χ					
6.10	85	X	X										X							X	X					Conjugate with vertical fracture strike 120 / 60'
6.26	5	X						X					X			Х					Х					
6.38	10	X						X					X							X	Х					Light brown clay
6.48	5	X						X					X			X					Х					
6.60	5	X						X					X			X					X					
6.74	5	X						X					X			X					X					
6.78	5	X						X					X			X					X					
6.88	15	X				X							X			X					X					
6.91	10	X				X							X			X					X					
7.13	5	X						X					X			X					X					
7.37	5	X						X					X			Х					Х					
7.57	10	X						X					X			Х					Х					
7.74	15							X					X			Х					Х					
8.64	0							X					X				X					X				Orange brown Fe staining
8.68	50							X					X				X					X				Orange brown Fe staining
8.73	50							X					X				X					X				Orange brown Fe staining

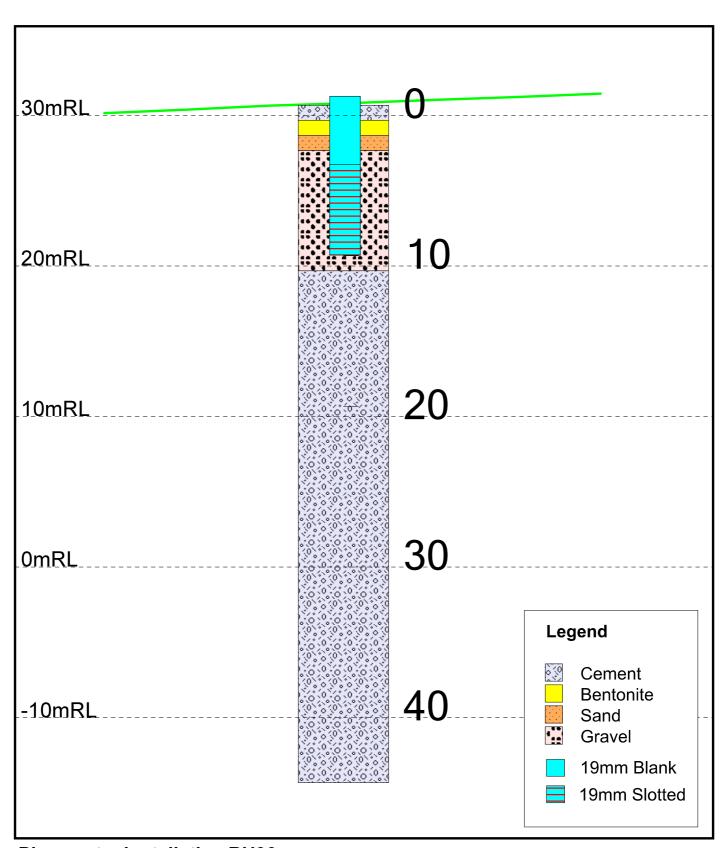
		PROJI	ECT NAM	1E I	Lackag	gh Qua	arry																				REPORT NO:	
		CLIEN	T: Galw	vay Co	ounty C	ouncil																					HOLE NO:	BH-05
		ENGI	NEER: AI	RUP																							LOGGED BY:	Dave Blaney
' (m	Vxis					Rou	ghne	ess						Apertui	re				Fillin	ıg			We	athe	ring			
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Non Intact? (NI)	Step	ped	Un	ıdulat	ting	I	Plana	r	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	×	SI	Mod	High	Comp	C	omments
Depth of I	Orient.to	Non I	R Sr	n St	t R	Sm	St	R	Sm	St	ō	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	Ü	Stai	%	W %	IJ.	×	S	M	Hi	రి		
8.92	45		X											X				X					X				Orange brown Fe s	taining
9.20	45							X						X							X		X				Orange brown Fe s	
9.35	60		X											X				X					X				Orange brown Fe s smearing	taining, light brown clay
10.25	5							X						X			X					X						
10.4 - 11.3	85							X						X						X	X		X					ure, minor calcite and coating fracture surface
10.50	5							X						X			X					X						
11.20	50				X									X						X	X	X					Light grey calcite a coating fracture sur	nd minor brown clay
11.30	5							X						X			X					X					-	
11.90	5		X											Х						X		X					Fracture devoped a argillite lining	long stylolite, black
11.95	80	X						X						X			X						X				Minor Fe staining	
12.05	15				X									X			X					X						
12.42	10		X											X						X		X					Fracture devoped a argillite lining	long stylolite, black
12.60	55							X						X			X					X						
12.6 - 13.4	85							X						X				X					X				Minor Fe staining	
12.78	0	X						X						X							X	X					Minor light brown	
12.84	5	X						X						X							X	X					Minor light brown	clay
13.02	5	X						X						X			X					X						
13.26	5	X						X						X			X					X						
13.52 13.82	5	1						X				-		X			X					X						
14.39	30							X						X			Λ				X	X					Sand/clay coating,	minor Fe staining
14.72	55	+						X						X			X				Λ	X					Sand/Ciay Coating,	mmor i e swiimig
15.00	30	1						X						X			X					X						
15.15	15		X											X						X		X					Fracture devoped a argillite lining	long stylolite, black
15.20	85	X			X	1								X			X					X					5 5	
15.33	85	X			X									X			X					X						
15.40	20				X									X							X	X					Minor brown clay	
15.55	10		X											Х						X		X					Fracture devoped a argillite lining	long stylolite, black
16.59	10				X									X			X					X						
16.86	10							X						Х							X		X				Minor light brown oxidation of fracture	clay, some pitting & weak re surface
16.90	30							X						X							X		X				Minor light brown oxidation of fracture	clay, some pitting & weak re surface


		PROJ	ECT N	AME	La	ckagh	Qua	rry																			REPORT NO:	
		CLIE	NT: G	alway	Cour	nty Cou	ıncil																				HOLE NO:	BH-05
		ENGI	NEER:	ARU	P																						LOGGED BY:	Dave Blaney
(m	xis					J	Roug	hnes	ss					Apertui	re				Fillir	ıg			We	athe	ring			
Depth of Discontinuity (m BGL)	Orient to Short Core Axis	Non Intact? (NI)	St	teppe	d	Und	ulati	ng	Pl	anar	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining	% Soil	% Mineral	Clay	X	SI	Mod	High	Comp	C	omments
Depth of	Orient.to	Non	R	Sm	St	R	Sm	St	R	Sm St		>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	C	Sta	%	% %	0			4	н	Ö		
17.20	10								X					X							X	X					Grey/brown clay co	pating fract. Surface
17.25	85	X				X								X							X	X					Minor grey / brown	ı clay
17.40	45					X								X							X	Х					Minor grey/brown	clay coating fract. Surface
17.78	5					X								X							X	Х					Undulating - ampli	tude 2cm, brown clay
18.03	15		Χ											X							X	X					Minor clay	
18.30	15					X								X			X					X						
18.50	85	X							X					X						X		X					Minor white calcit	2
18.60	20								X					X							X	X					Orange/brown clay	smeared on fract surface
18.80	10								X					X							X	X					Orange/brown clay	smeared on fract surface
18.90	85								X					X						X		X					Minor white calcit	;
18.97	10					X								X			X					X						
19.20	20					X								X							X	X					Orange/brown clay	infill
19.60	5								X					X			X					X						
19.98	45	X							X					X							X	X					Orange/brown clay thick	infill, aperture up to 2mm
20.00	45	Х							X					Х							X	X					Orange/brown clay thick	infill, aperture up to 2mm
20.04	45								X					X			X					X						
20.12	10								X					X			X					X						
20.60	85								X					X			X					X						
20.60	75					X								X							X	X					Orange/brown clay	coating fract. Surface
20.52	10								X					X			X					X						
20.73	20	X	X											X							X	X					Very rough - Orang fract. Surface	ge/brown clay coating
20.87	35	Х	X											X							X	Х					Very rough - Orang fract. Surface	ge/brown clay coating
20.97	50					X								X							X	X					Orange/brown clay	coating fract. Surface
21.23	55					X								X							X	X					Brown sandy clay	coating
21.35	55					X								X							X	X					Brown sandy clay	
21.42	55					X						Х									X	X					Joint aperture is >1 brown clay	0mm infilled with orange
21.86	30	X							X					X			X					X					-	
21.90	20								X					X			Х					X						
22.05	45								X					X			X					X						

		PROJ	ECT NAM	TE L	acka	gh Qu	arry																				REPORT NO:
		CLIEN	T: Galw	vay Co	unty (Council	1																				HOLE NO: BH-05
		ENGI	NEER: Al	RUP																							LOGGED BY: Dave Blaney
(m	xis					Rou	ıghne	ess					1	Apertui	·e				Fillin	ıg			We	athe	ring		
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Intact? (NI)	Step	ped	U	ndula			Plan	ır	Other	V Open	Open	Mod Open	Tight	V Tight	Clean	Staining		% Mineral	Clay	X	SI	Mod	High	Comp	Comments
Depth of	Orient.to	Non	R Sr	n St	R	Sm	St	R	Sm	St	O	>10m m	2.5-10	0.5-2.5	0.1-0.5	<0.1	D	Sta	%	W %	0			N	Н	C	
22.10	5							X						X			X					X					
22.45	85	X						X						X							X		X				Clay coating fract surface minor Fe staining
22.92	10	X						X						X							X	X					Clay coating fract surface
23.40	70							X						X							X	X					Light brown clay over basal 30cm
23.60	5	X						X						X			X					X					
23.72	10							X						X						X		Х					Minor light grey calcite
24.40	60							X						X			X					X					
24.50	0							X						X			X					Х					
25.04	0							X						X			X					X					
25.52	45							X						X						X		X					Minor light grey calcite
25.82	25				X									X			X					X					and againg any amount
26.37	5							X						X			X					X					
26.61	5							X						X			X					X					
26.70	80	X						X						X				X				X					Minor Fe staining
27.10	85							X	_					X						X		X					Minor white calcite
27.10	20	X	X					Λ						X			X			Λ		X					Willion white earene
27.14	55	Λ	Λ					X						X			X					X					
27.62			X					Λ									X					X					
	55		Λ					37						X			X					1					
27.88	0	37						X														X					
28.05	5	X						X						X			X					X					
28.12	60	X						X					-	X			X					X					
28.16	5	X			X				1					X			X					X					
28.25	90	1						X	1				1	X			<u> </u>			X		X					Minor white calcite veining
28.40	55	X						X	_				1	X			X			1		X					1
28.1 - 32.35	85-90							X						X						X		X					Axial parallel fracture, surfaces partially coated with white calcite
28.81	15	X						X						X			X					X					
28.90	20	X						X						X			X					Χ					
29.05	30	X						X						X			X					X					
29.35	10	X			1			X	\perp				\perp	X			X		\mathbb{L}^{-}			X	L				
29.40	60	X						X						X			X					X					
30.00	5	X						X						X			X					X					
30.30	40	X						X						X			X					X					
30.38	10	X			X									X			Х					X					
30.50	10	X						X						X			X					X					


		PROJI	ECT N	NAME	La	ckag	h Qua	arry																			REPORT NO:	
		CLIEN	T: (Galway	Cou	nty C	ouncil	l																			HOLE NO:	BH-05
		ENGIN	NEER	: ARU	P																						LOGGED BY:	Dave Blaney
, (m	Axis						Rou	ighne	ess				1	A pertur	·e				Fillir	ng			We	ather	ring			
Depth of Discontinuity (m BGL)	Orient.to Short Core Axis	Non Intact? (NI)	S R	Sm	ed St	Un R	dulat Sm			Plana Sm	Other	A Open	2.5-10	0.5-2.5	Light	V Tight	Clean	Staining	% Soil	% Mineral	Clay	×	IS	Mod	High	Comp	Co	mments
30.78	10	X							X					X			X					X						
30.90	35	X							X					X			X					X						
31.30	50	X							X					X				X					X					
31.60	70	X	-						X					X				X					X					
31.90	45	X							X					X			X					X						
32.07	35								X					X			X			1		X						
32.24	5	1							X			-		X			X			1		X						
32.85	15								X					X			X			1		X						
32.91	20								X					X			X					X						
33.30	5								X					X			X					X						
33.55 33.80	5								X					X			X					X						
33.94	10					X			Λ					X			X					X						
34.55	10					71			X					X			X					X						
34.73	45								X					X			X					X						
34.9 - 37.2	85					Х								X				X			X		X				Locally stepped aspe	ect, trace clay coating aining over top 1.5m
34.90	20								X					X			X					X					,. 8	<u>S</u>
35.00	45	X							X					X			X					X						
35.23	20	X		X										X			X					X						
35.37	10	X							X					X			X					X						
35.54	15	X							X					X			X					X						
35.63	10								X					X			X					X						
35.73	10		-						X					X			X					X						
36.10	5	X							X					X						1	X		X				Minor clay, slight Fe	Staining
36.40	20	X							X					X			X			1		X						
36.47	10	37							X			-		X			X			+-		X						
36.88 37.20	45 30	X				v			X	-				X			X			1	X	X					Traces of orange bro	vym alay
38.05	10					X			X					X			X			+	А	X					races of orange bro	own clay
37.95 - 40.0	85					X			Λ					X			Λ				X	^	X				Minor clay smearing Fe staining	surfaces and locallised
38.64	10	X							X					X			X			+		X					i C staining	
39.64	10	X							X					X			X			+		X						
39.75	55	X							X					X			X					X						
39.90	65	X							X					X			X					X						

APPENDIX IV



Piezometer Installation BH04

Piezometer Installation BH05

Piezometer Installation BH06

APPENDIX V

R13/16

Report on Geophysical Surveys
completed at
Lackagh Quarry
Co. Galway
for Arup

Graham Reid P.Geo.

Project Number: R13/16

Author(s): Graham Reid P.Geo,

BRG Ltd. Arup

Date of Report: January 2016

Private & Confidential

THE DATA PRESENTED IN THIS REPORT WAS ACQUIRED FROM GEOPHYSICAL NON-INVASIVE TECHNIQUES CARRIED OUT AT SURFACE. INTERPRETATIONS ARE DERIVED FROM A COMBINATION OF GROUND CONDITIONS, TYPICAL GEOPHYSICAL RESPONSES AND THE KNOWLEDGE/EXPERIENCE OF THE AUTHOR. BRG LTD HAS COMPILED AND INTERPRETED THE DATA TO BEST INDUSTRY STANDARDS AND WITH ALL REASONABLE SKILL AND DILIGENCE IN RELATION TO THE TECHNIQUES AND RESOURCES APPLIED IN AGREEMENT WITH THE CLIENT. ANY FUTURE USE OF THIS REPORT SHOULD TAKE ITS INTERPRETIVE NATURE INTO CONSIDERATION.

Report				
Number	Author	Checked By	Version	Date
R13/16	Graham Reid P. Geo	Dave Blaney P. Geo	V1	18/01/2016
Signed				

R13/16

Report on Geophysical Surveys at Lackagh, Co. Galway Graham Reid, January 2016

Contents

1. Executive Summary	4
2. Introduction	5
2.1 Survey Objectives	6
3. Geological setting	6
4. Survey Equipment and methodology	7
5. Discussion of Results (Figures 3-16)	
<u>List of Figures</u>	
Figure 1: Aerial Photograph Site Location Map	5
Figure 2: Location Map	6
Figure 3: Resistivity Line Location map	10
Figure 4: ERT1 - Section & Interpretation	11
Figure 5: ERT2 - Section & Interpretation	12
Figure 6: ERT3 - Section & Interpretation	13
Figure 7: ERT4 - Section & Interpretation	14
Figure 8: ERT5 - Section & Interpretation	15
Figure 9: ERT6 - Section & Interpretation	16
Figure 10: ERT7 - Section & Interpretation	17
Figure 11: ERT8 - Section & Interpretation	18
Figure 12: ERT9 - Section & Interpretation	19
Figure 13: ERT10 - Section & Interpretation	
Figure 14: Microgravity Line Location Map	
Figure 15: Microgravity Bouguer Gravity Map	
Figure 16: Geophysical Interpretation Map	

1. Executive Summary

BRG Ltd completed geophysical surveys in an area to the west of the abandoned Lackagh Quarry, Menlo, Co. Galway as part of the Priority Drilling Ltd preliminary site investigation for the proposed new road alignment through this area. The geophysical surveys consisted of 2D Electrical Resistivity Tomography (ERT) and Microgravity across an initial area of roughly 300*30m, subsequently extended to better define the extent of a deep weathering/karst zone.

The surveys were designed to test for subsurface details and bedrock depths in advance of follow up rotary core drilling. Information on potential karst features were of particular interest to the client. The bedrock exposed in the quarry and outcropping to the west consists of strong, thickly bedded Visean limestones dipping gently to the south-west. A thin Tuff band is reputed to control a local aquifer, with more thinly bedded limestones and thin shaley bands developed beneath.

Outcrop to the west of the quarry consists of well-developed limestone pavement extending c,80-100m to the west, which gives way to grass fields across the remainder of the survey area.

Resistivity sections from the 2D ERT and gravity data show a marked contrast from high resistivity bedrock in the east with a sharp contact into very low resistivity zones to the west. The western region has a low gravity response coincident with the low resistivity. The base of the initial ERT lines did not penetrate below 30m in the west suggesting that this area could be a deep overburden/weathered zone, possibly a karst filled sinkhole or more shaley unit.

The work was completed over three separate periods:

- 6 day period from 27th October to 3rd November 2015.
- 1 day, 25th November
- 3 days, 13-15th January

2. Introduction

BRG was hired by Priority drilling Ltd. to acquire 2D ERT and microgravity data along a planned potential route for the new Galway ring road located to the west of Lackagh Quarry.

The Quarry is located to the north of Galway city with easy access off the Coolagh Road. The quarry is abandoned and fenced off and site access was organised through Sean Ross of Arup. The work was completed mainly across fields and limestone pavement to the west of the quarry and outside the quarry footprint. A rough track running from inside the quarry bounds allowing access into the fields. Loose cattle including a bull were running free within the fields and surrounding scrub, however these were fenced out of the fields when ERT lines were being acquired. A minor microgravity grid was also added on the first bench within the quarry over the area where the proposed horizontal borehole was drilled.

Figure 1: Aerial Photograph Site Location Map

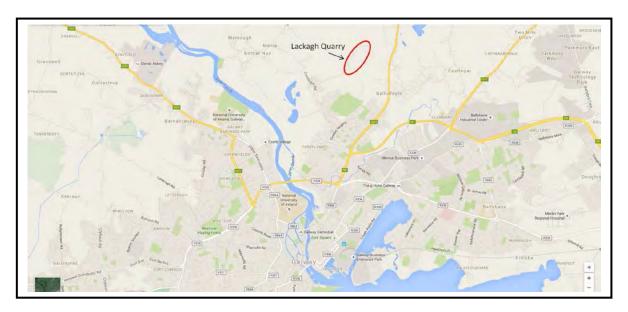


Figure 2: Location Map

2.1 Survey Objectives

- 1) Acquire 2D Resistivity and Microgravity data across the specified region within and proximal to the Lackagh Quarry site.
- 2) Generate Maps and sections showing the geophysical characteristics of the site and generate interpretative maps and sections of the overburden/bedrock model over the chosen areas.
- 3) Outline potential areas for future intrusive investigations (in particular to assist with locating follow up rotary drilling)

3. Geological setting

The mapped geology from the Geological Survey of Ireland (1:100,000) shows the site to be underlain by undifferentiated Visean limestones / shaley limestones. The rocks are well exposed within the quarry and to the west as outcropping weathered limestone pavement. These limestones are massive, thickly bedded micritic / grainstone units, generally strong and dipping to the southwest. Overburden appears to be mostly clay and gravels and most likely glacially derived soils (the site walk over noted rounded granite boulders scattered across the limestone pavement, these are probably glacial erratics). A pronounced Tuff band clearly exposed in the quarry underlies the massive limestones and is thought to control a local aquifer. It also appears to host minor sulphides (pyrite) with iron staining developed on the surface of the underlying, slightly argillaceous, limestones.

4. Survey Equipment and methodology

The geophysical surveys were chosen to provide detailed overburden/bedrock profiles along the chosen lines (ERT) and to identify any significant anomalous zones that could be a result of faults/fractures or karst development (ERT and Microgravity).

The depth mapping potential with the ERT is limited by the length of each spread so that individual spreads were capable of surveying to from 22m b.g.l. in Line 5 to a maximum of 60m b.g.l. with Line 6. Equipment consisted of an Allied Associates Tigre system which has the potential for up to 128 electrode takeouts. 2m station spacing was initially used to get the required detail along the chosen lines, with 3m intervals on the long lines (6, 7 & 8). Data was measured using a Wenner array, controlled by an Imager2006 programme with a laptop computer. Saved data was inverted using the Geotomo Res2Dinv programme and exported as an image file displaying a cross section of the inverted Resistivities with elevation data. The resultant resistivity sections were subsequently interpreted and an interpreted geological model developed.

Microgravity data was acquired with measured sites along the centre line and 15m either side of the proposed tunnel section. These lines were measured with nominal station spacing of 10m, with gaps where scrub hawthorn was too thick. Extra stations were measured within the quarry on the first bench at 5-10m intervals. Measurement was taken using a Lacoste & Romberg model G gravity meter. Instrument drift was monitored by returning to a locally established base station at hourly intervals.

Stations were topographically surveyed using a Trimble GeoExplorer 6000 RTK GPS system corrected through phone modem link for both the ERT and the gravity surveys. The drift corrected gravity data was corrected for elevation, latitude, and reduced to Bouguer 2.67g/cm³ to allow for local average rock densities. It was then gridded and exported for display and interpretation in the MapInfo GIS system.

All points were surveyed in Irish Transverse Mercator (ITM) projection.

5. Discussion of Results (Figures 3-16)

The 2D ERT data defines a marked contrast between the resistive massive limestones to the east and exposed within the quarry and a narrow, deep, conductive response that was detected to the west. This contact is clearly seen on lines 1 (at station 114) & 2 (station 134) where it is shown as steep westerly dipping feature. Lines 3 & 4 are almost entirely mapping the lower resistivity unit which is greater than 14m deep. This conductive zone could represent a combination of thicker overburden and underlying weathered bedrock. Line 5 was surveyed entirely on the edge of the

outcropping limestone pavement and displays a thin conductive overburden layer over resistive bedrock.

Line 6 was extended N-S perpendicular to the long axis of the fields with the aim of mapping the edges of the deep overburden feature – this line was surveyed while BH3 was still in progress, with the inversion model shows the hole located within a significant deep overburden (low resistivity) feature. The southern contact of the deep overburden feature is mapped as being sub-vertical with the overburden depth increasing from <1.0m to >55.0m within a few meters. The northern side of the deep overburden feature exhibits a steeped nature with a rapid shallowing at station 210 to a depth of c.35m bgl, and the northern edge seen at station 275 where the overburden depth shallows rapidly.

Lines 7 & 8 were surveyed along similar locations to 2 & 1 respectively; however they were surveyed at 3m electrode spacing and extended to the west. Line 7 exhibits a strange higher resistivity shallow zone to the west of station 96 with lower resistivity below – this most likely reflects the line location proximal to the southern contact of the deep overburden feature resulting in the inversion model displaying some "edge" effects.

Lines 9 & 10 were also designed to map the edges of the deep overburden feature, and this has been successfully achieved along the southern contact and only partially successful in the north (where thick hawthorn bush in an environmentally sensitive area restricted access to extend the lines). These lines were surveyed using a 2m electrode spacing.

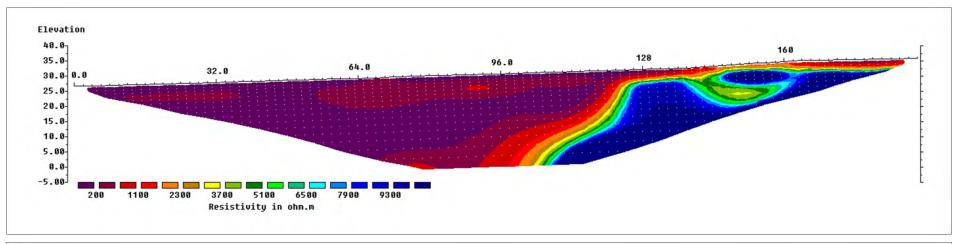
The microgravity data shows the same general scenario as the resistivity data. Higher density and more coherent limestones in the east give way to a lower density zone to the west with an irregular sinuous contact between the two. Measurements on the bench within the quarry give the same relatively high density limestone situation as seen at the area underlain by limestone pavement. However, the lower gravity readings located in zones along the edges of the quarry faces are interpreted as the effect of terrain factors

The geophysical interpretation (Figure 16) is derived from a combination of both the Microgravity and 2D ERT methods. This outlines the contact zone at about 530,130E between shallow limestones to the east and deeper overburden/weathered zone to the west. The original ERT lines and microgravity provided limited definition of the contact zones and these have been refined by the extended 3m interval lines. The rotary drilling has shown that the ERT models correlate well with the underlying geology. The mapped low resistivity zone closely follows the field outline. Completed drillholes have been located on the model sections, with those annotated as "offset"

projected from up to 10m away onto the sections (N.B. there is some slight discrepancy between the plotted holes and the modelled section inversion as the holes have been extrapolated from up to 10m off line)

The unusual nature of these grass fields and where they sit within the surrounding limestone pavement would also support the possibility that they reflect the surface expression of an infilled topographic feature such as a slot canyon.

R13-16


ERT Line Locations 529,800 mE 529,900 mE 530,000 mE 530,200 mE 728,500 mN. **⊕BH1** ERT8 728,400 mN **⊕ВН6 ⊕BH3** ERT7 ERT2 728,300 mN 728,200 mN. 100 Figure 3

metres

West

2m Electrode Takeouts

East

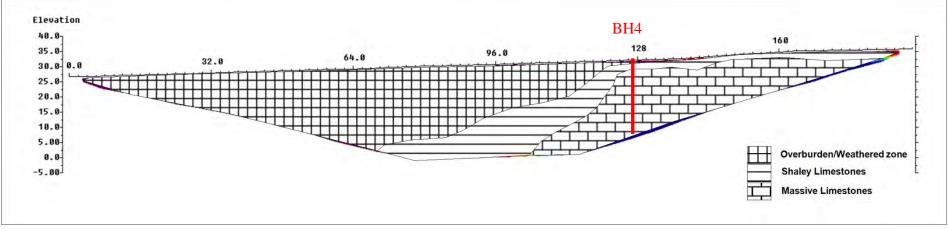
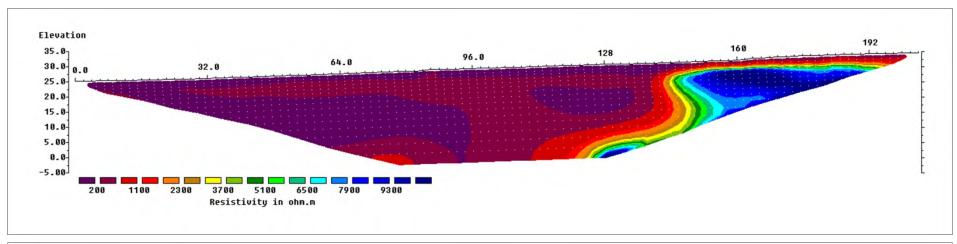



Figure 4

West 2m Electrode Takeouts East

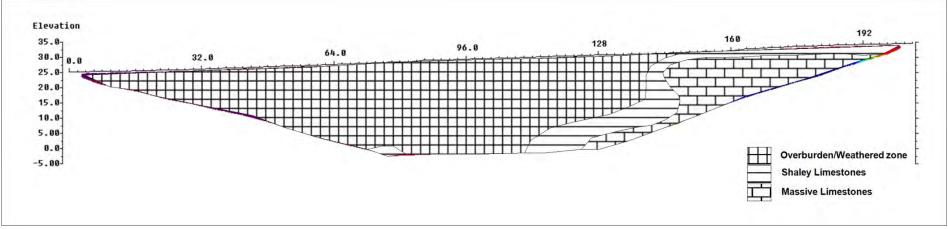
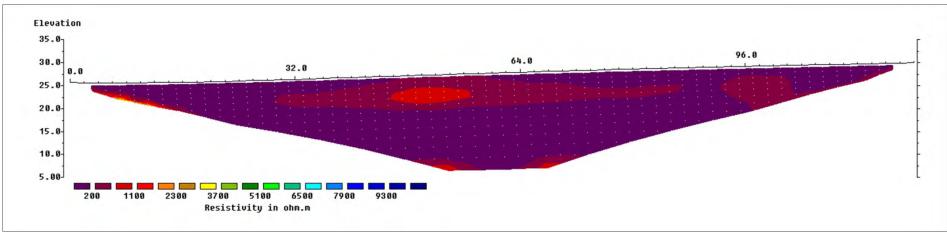



Figure 5

SW 2m Electrode Takeouts NE

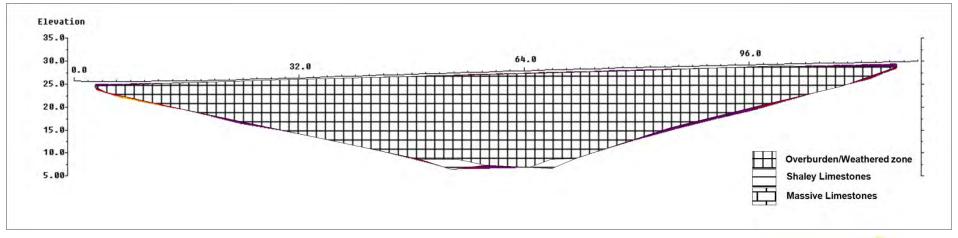
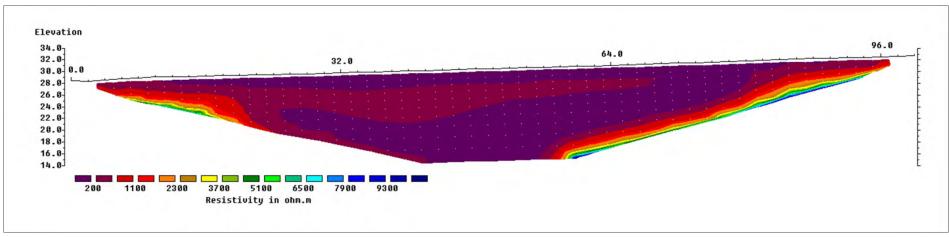



Figure 6

SW 2m Electrode Takeouts NE

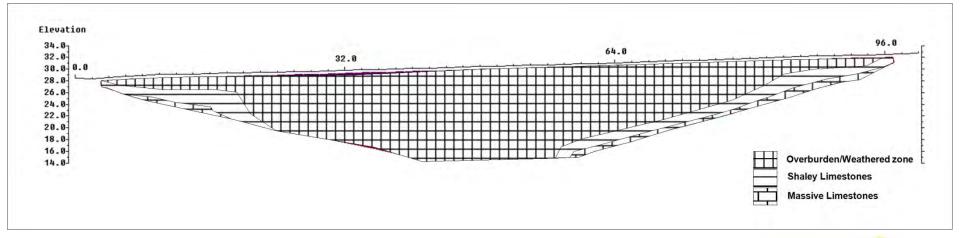
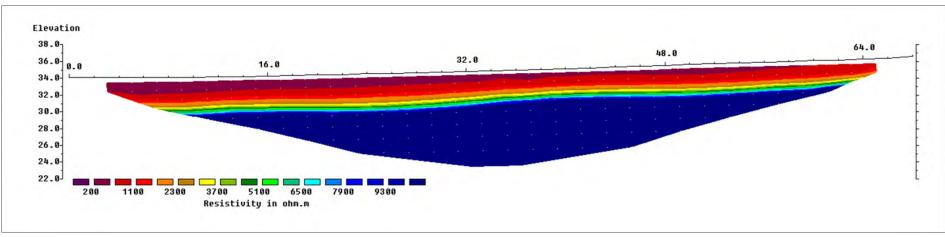



Figure 7

SW 2m Electrode Takeouts NE

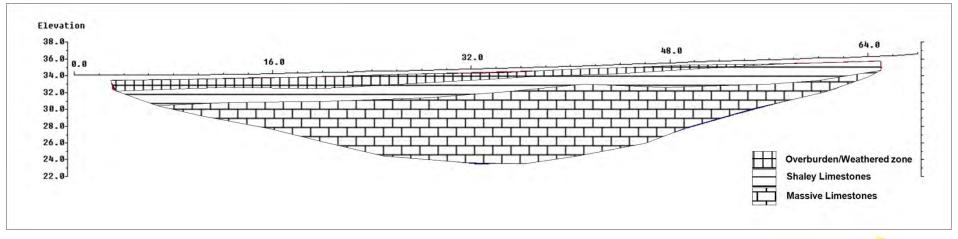
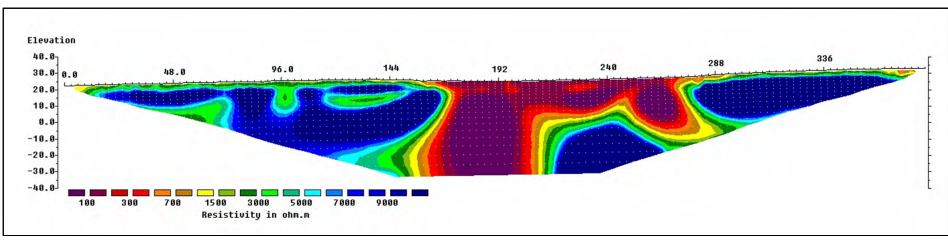



Figure 8

S 3m Electrode Takeouts

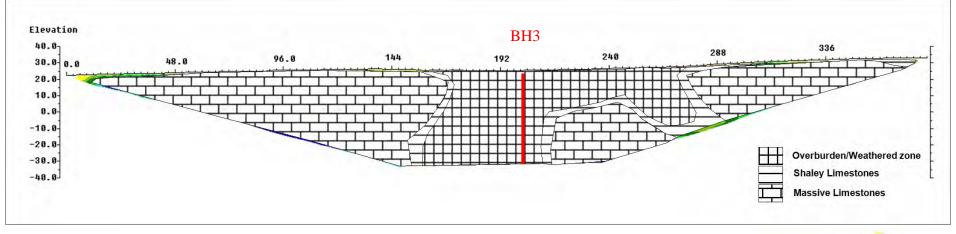
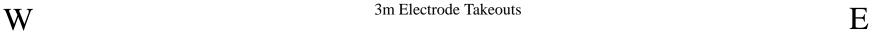




Figure 9

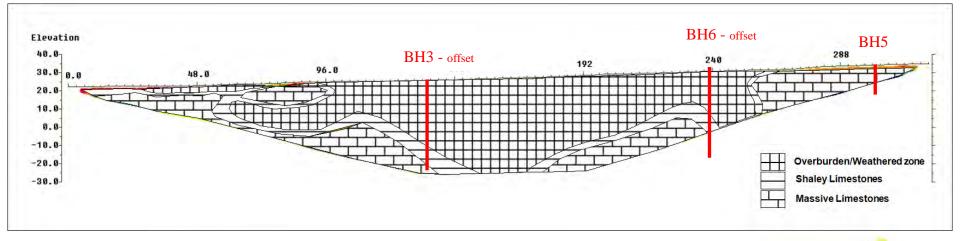
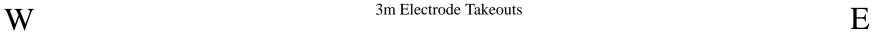
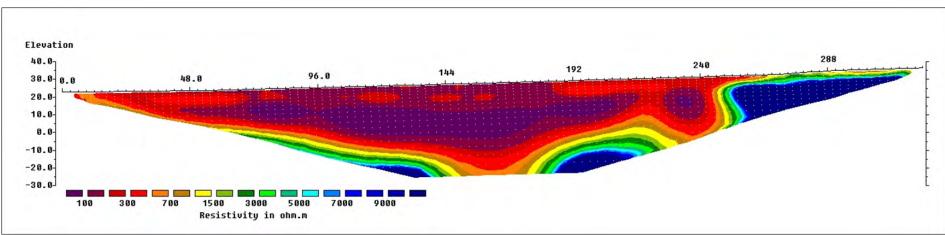




Figure 10

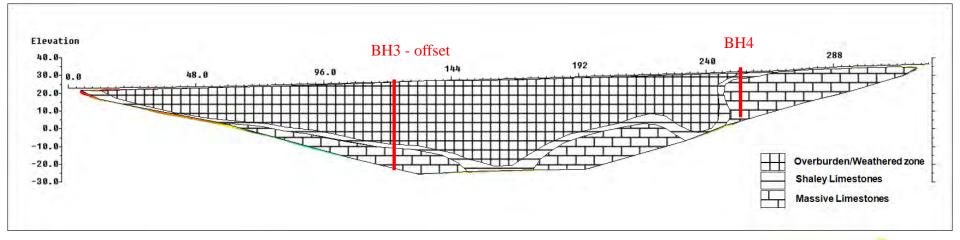
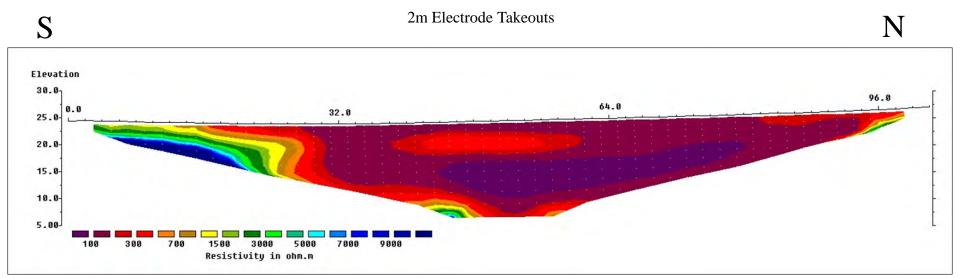



Figure 11

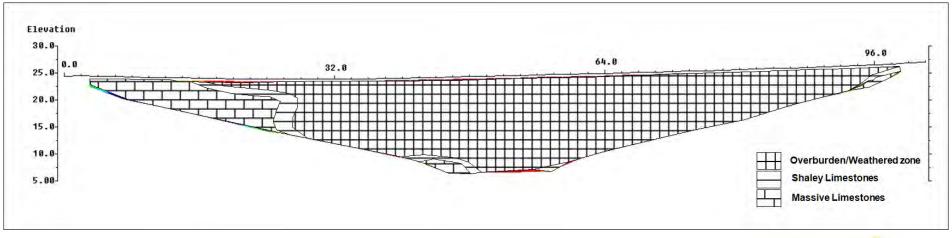
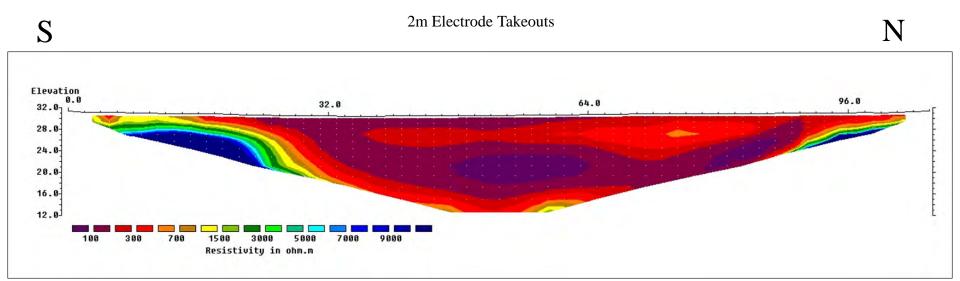



Figure 12

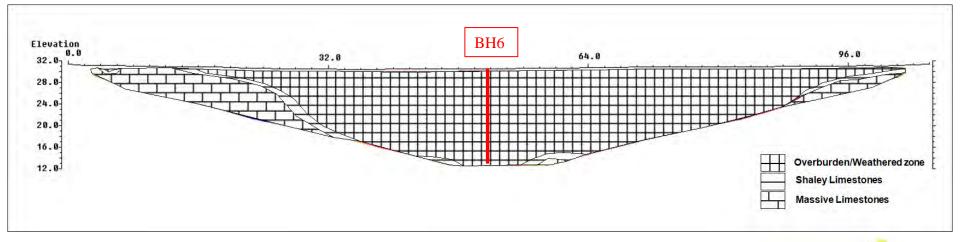


Figure 13

Microgravity Station Location Map

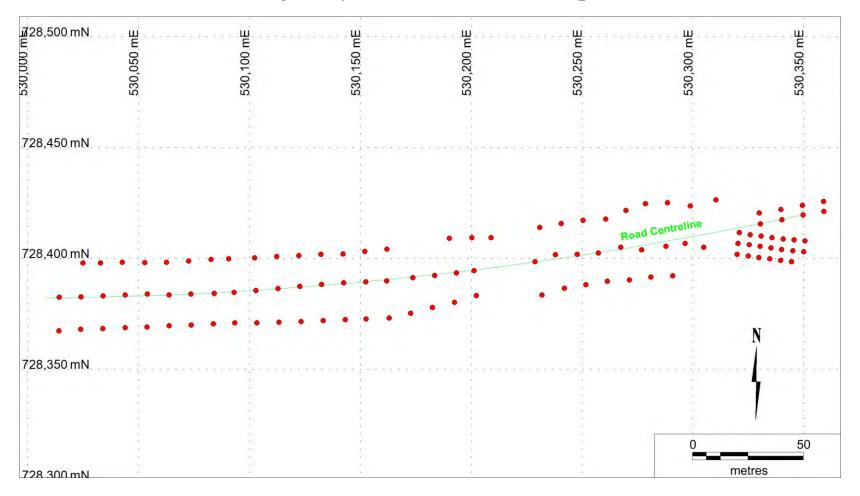


Figure 14

Microgravity Bouguer Gravity Map

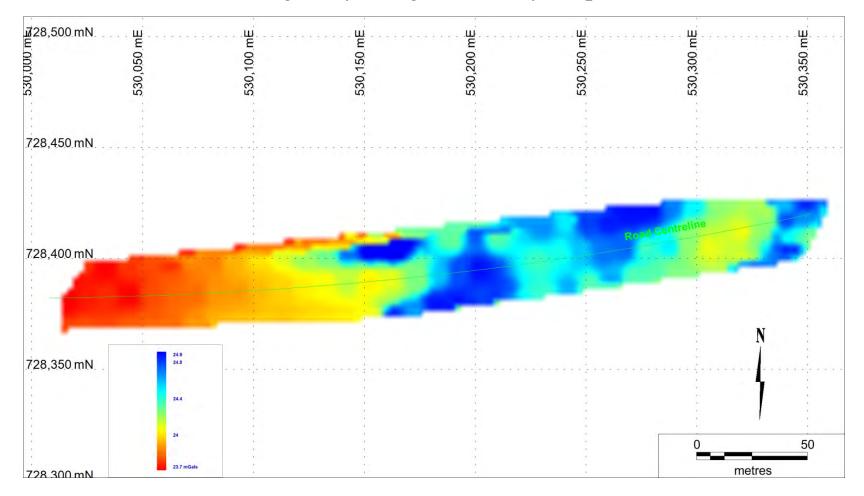
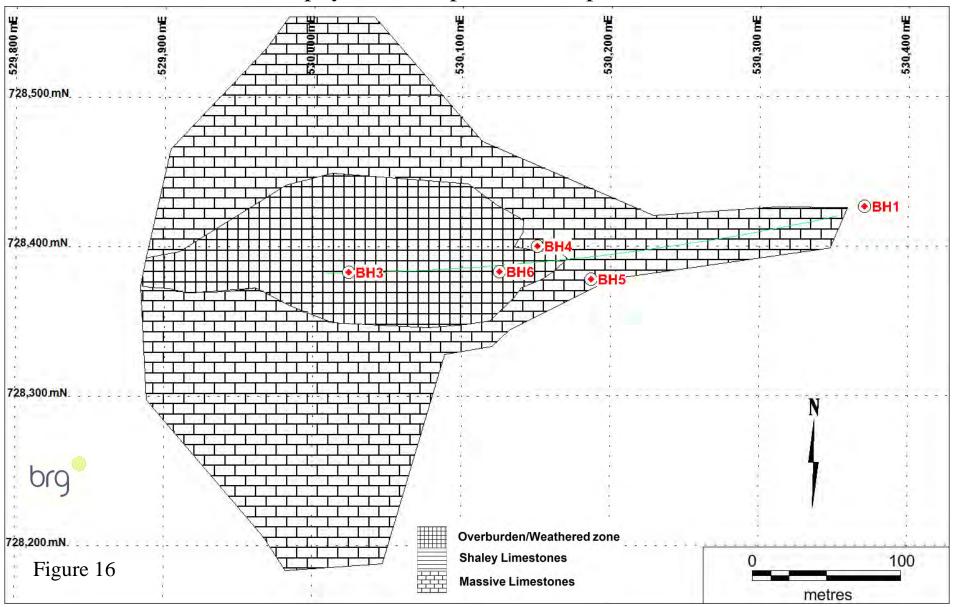



Figure 15

Geophysical Interpretation Map

APPENDIX VI

REPORT ON THE GEOPHYSICAL LOGGING OF TWO BOREHOLES AT

LACKAGH QUARRY

Prepared For:

Priority Drilling Ltd. Killimor, Ballinasloe, Co. Galway, Ireland

JAN 2016/PRIO1502_ rpt/IRL

	Name	Date
Logged by:	Rhys Powell	8/9.12.15
Report by:	Rhys Powell	4.1.16
Checked by:	James Whitford	6.1.15

European Geophysical Services Ltd

22 The Stables, Sansaw Business Park, Hadnall, Shrewsbury. SY4 4AS
Tel: 01939 210710 | Fax: 01939 210532 E-mail: eurogeophys@europeangeophysical.com | www.europeangeophysical.com

CONTENTS

1.	INTRODUCTION	1
2.	THE GEOPHYSICAL LOGGING METHODS	2
3.	SITE DETAILS	6
4.	PROCESSING AND PRESENTATION OF IMAGER RESULTS	7
5.	BOREHOLE LOGGING CONSTRAINTS	8

LIST OF FIGURES

Figure 3.1	Location map showing Lackagh Quarry highlighted by red square
Figure 3.2	Aerial image showing approximate borehole locations.
Appendix 1	Defect Classification
Appendix 2	Geophysical Logs

1.0 **INTRODUCTION**

At the request of Priority Drilling Ltd., borehole imaging and geophysical logging was carried out in two boreholes at Lackagh Quarry, Co. Galway, Ireland.

The work was carried out by European Geophysical Services on the 8^{th} and 9^{th} of December 2015.

The following logs were run:-

ВН	Logs	From (m)	To (m)
4	Optical Imager, Acoustic Imager	3.1	34.0
4	Fluid Temperature and Conductivity, Natural Gamma, Caliper	3.1	34.2
4	Impeller Flowmeter	16.0	33.7
4	Focused Resistivity	15.5	34.0
4	Full Wave Sonic	15.5	34.0
4	Pumped Temperature and Conductivity	18.8	34.2

вн	Logs	From (m)	To (m)
5	Optical Imager, Acoustic Imager	1.0	39.9
5	Fluid Temperature and Conductivity, Natural Gamma, Caliper	1.0	40.0
5	Impeller Flowmeter	17.6	40.0
5	Focused Resistivity	17.6	40.0
5	Full Wave Sonic	17.6	40.0
5	Pumped Temperature and Conductivity	24.1	40.0

2.0 THE GEOPHYSICAL LOGGING METHODS

The Equipment and Field Procedure

A fully digital logging system with a 600m capacity motorised winch mounted in a Land Rover was used.

All logging data was recorded digitally for reprocessing and archiving purposes.

With the exception of the fluid logs, all logs were run from the bottom of the boreholes upward.

The optical imager survey was carried out first to avoid the disturbance of the fluid by the geophysical logs which may affect water clarity.

Fluid Temperature (T)

There is a natural geothermal gradient of increasing temperature with depth. This gradient varies with the thermal conductivity of the geological formation and is modified by water flowing in, out or vertically though the borehole.

This log is used to determine any flow pattern within the borehole and to identify flow zones.

Differential logs are produced over a one metre spacing, these are an interpretative aid to detect gradient changes.

Fluid Conductivity (EC or EC25)

The electrical conductivity (EC) of the water is related to its salinity and dissolved solids and is therefore a measure of the quality of the borehole water. The shape of the log trace can indicate zones of inflow.

Using data from the temperature log the electrical conductivity is corrected to 25°C (EC25).

This log is used to identify different zones of water quality.

Differential logs are produced over a one metre spacing, these are an interpretative aid to detect gradient changes.

2.0 THE GEOPHYSICAL LOGGING METHODS

Optical Borehole Imager (Optical)

A precision-machined prism and CCD camera assembly permits a high definition video image of the borehole wall to be captured in a variety of horizontal and vertical resolutions. The resulting image is digitised in the sonde for transmission to the surface acquisition system.

The image is then orientated to Magnetic North and displayed as an unwrapped image log. This enables a detailed structural interpretation to be made if required.

For the best results the optical imager should be run above the water level or in clean, clear fluid. The logging tool is centralised during data acquisition by two sets of bow springs. The bow springs are adjusted to a variety of borehole diameters prior to acquisition. The image is recorded on the way down the borehole to limit disturbance to the clarity of the water in the borehole by the logging tool.

Images and associated data are viewed in real time during the data acquisition.

The orientation system employs a flux gate magnetometer and therefore the recorded data within approximately one metre of magnetic steel casing is unorientated. This is corrected manually during the post-processing stage

Acoustic Borehole Imager (Amplitude and Travel Time)

This tool scans the borehole wall through 360 degrees and records the acoustic reflection of the resulting signal in terms of amplitude and transit time (the travel time from the tool to the borehole wall). This technique requires a fluid filled borehole with a minimum of suspended solids, polymers or muds within the fluid column.

This sensitive technique responds to small diameter changes, rugosity and the acoustic nature of the borehole wall. It is primarily used for detecting fractures and other discontinuities. The resultant images are orientated (to magnetic North) 0° through 90° , 180° and 270° back to 0° .

The logging tool is centralised during data acquisition by two sets of bow springs. The bow springs are adjusted to a variety of borehole diameters prior to acquisition. The image is viewed on the way down the borehole to allow fine tuning of the acquisition parameters. The settings are then adjusted and the image recorded on the way up the borehole which ensures a constant line speed during acquisition.

Images and associated data are viewed in real time during the data acquisition.

The orientation system employs a flux gate magnetometer and therefore the recorded data within approximately one metre of magnetic steel casing is unorientated. This is corrected manually during the post-processing stage

2.0 THE GEOPHYSICAL LOGGING METHODS

Impeller Flowmeter (FV)

This log is used to determine any flow pattern within the borehole and identify flow zones. The tool uses an impeller and is normally run at a constant logging speed against the anticipated flow for the best response. The data is corrected for logging speed and a fluid velocity (FV) log is produced.

Caliper (Cal)

This tool measures the mean diameter of the borehole. It is used to check the integrity of the borehole lining, and where the borehole is unlined to identify zones of washout, breakout or fissures.

Natural Gamma (Gam)

The tool measures the naturally occurring gamma radiation found in rocks and sediments. It is mainly used to detect the clays that contain potassium K^{40} , though the U^{238} series of elements and the Th^{232} series of elements also emit gamma radiation.

The higher the concentration of these clay minerals the greater the responses on the natural gamma log.

Focused Resistivity Log (Res Deep and Res Shallow)

The Focused Resistivity tool uses Guard Electrodes to focus the current into the formation. This gives excellent vertical resolution and good penetration, especially in highly conductive borehole fluids where a Normal Resistivity Sonde would not be as effective.

The tool has two electrode spacing's to allow a deep and shallow depth of investigation.

The response of this log is a function of porosity, type of formation / mineralogy and its pore water quality. These logs aid in the identification of strata and quality of the pore water.

2.0 THE GEOPHYSICAL LOGGING METHODS

Full Wave Sonic (VDL)

This tool has been specially designed to provide a full wave form recording of sonic signals and uses fixed spaced transmitter – receivers.

The received signals are digitised at a fast sampling rate with high resolution. Data may be sampled at typically 5cm or 10cm intervals dependant upon resolution required.

The data is processed for P wave velocity (or transit time) and amplitude.

This tool can only be used in fluid filled unlined boreholes.

3.0 **SITE DETAILS**

Site: Irish Grid Ref: M 30240 28372 **Lackagh Quarry**

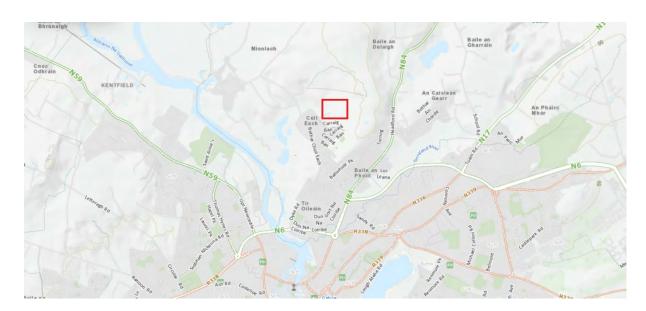


Figure 3.1 Location map showing location highlighted by red circle. © 2014 Ordnance Survey Ireland.

Aerial image showing approximate borehole locations. © Google 2016. Figure 3.2

4.0 PROCESSING AND PRESENTATION OF RESULTS

Detailed logs of the imager data have been produced at a vertical scale of 1:10. Composite geophysical logs have been produced at 1:50. Full Wave Sonic results are presented separately at 1:50 with Imager, Natural Gamma and Caliper data to aid interpretation.

Constructional details and information on each borehole are given in the headers of each log.

All images have been referenced to Magnetic North.

The borehole's azimuth and tilt are plotted alongside the images.

The image of the borehole wall is presented in an unwrapped form with a horizontal scale marked 0° - North, through 90° - East, 180° - South, 270° - West, back to North.

Structural features and discontinuities have been picked from the images in the form of colour coded sinusoidal projections - see Appendix 1 for details. 'Discontinuities' log is also presented with a horizontal scale marked 0° - North, through 90° - East, 180° - South, 270° - West, back to North.

Structure picking is not a definitive analysis of all the features within a borehole. Only the discontinuities that have a linear dip and direction are 'picked' and used in the analysis of the discontinuities. Features that do not have a regular sinusoidal shape do not have a linear dip and direction, 'best fit' picking of these features is done if approximately 80% coverage of the sinusoid can be achieved. Below this percentage the inaccuracy of the picking is too great and if included in any structural analysis may adversely skew the results. Vughs, solution holes, and angular break outs are examples of features not picked.

The apparent azimuth and apparent dip (i.e. relative to the borehole's azimuth and tilt) of the discontinuities are calculated using the diameter of the borehole and the geometric parameters of the sinusoids overlaid on the discontinuities. processing stage is to correct these apparent values to true azimuth (in relation to Magnetic North) and true dip (from horizontal) by correcting for the borehole's azimuth and tilt.

The final results are presented as a 'tadpole' plot (Discontinuities - True'). The horizontal position of the tadpole's head gives the defect's true dip angle and its tail points in the direction of the defect's azimuth. These logs are presented with a horizontal scale in degrees. By convention the top of the page is North (Magnetic) and the right hand edge of the paper is East.

The true structural data has been presented in digital format as an excel file (xls).

5.0 **BOREHOLE LOGGING CONSTRAINTS**

Vehicle access restrictions

Poor ground conditions, soft ground access to borehole locations

Tool access restrictions

None

Borehole conditions / risk to equipment

Drill rods left in boreholes prior to logging to prevent collapse. Highly fractured rock below casing in BH4.

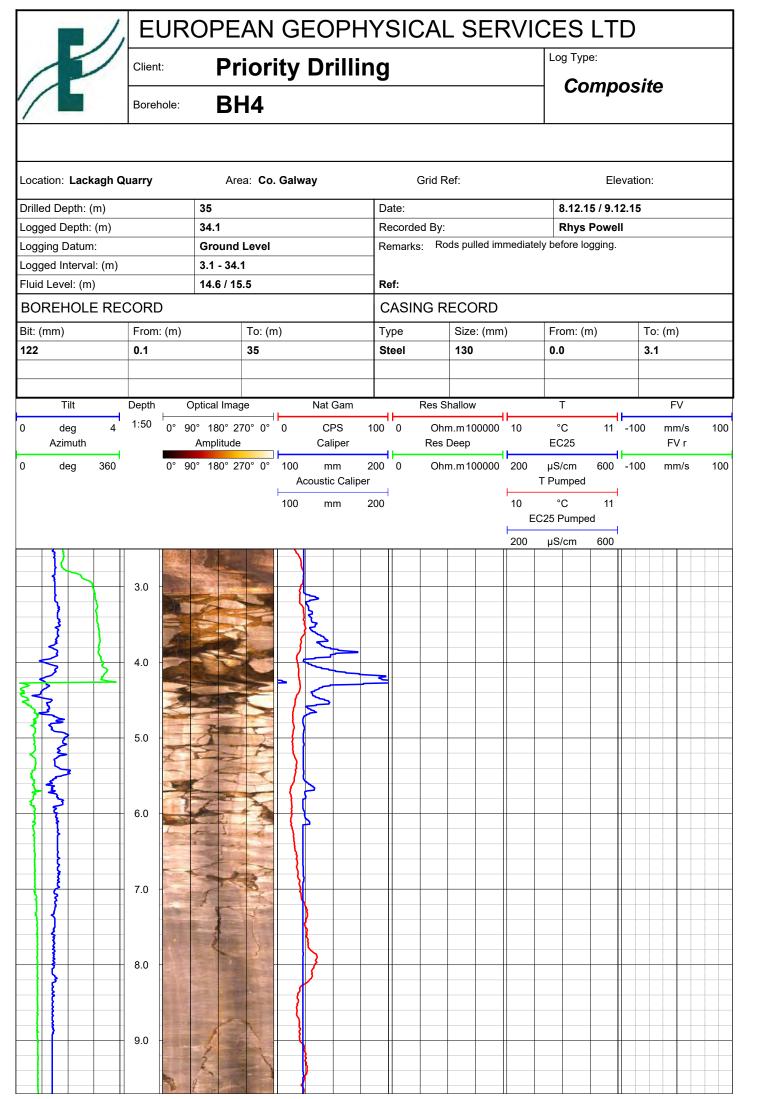
Lack of fluid filled column / cloudy fluid

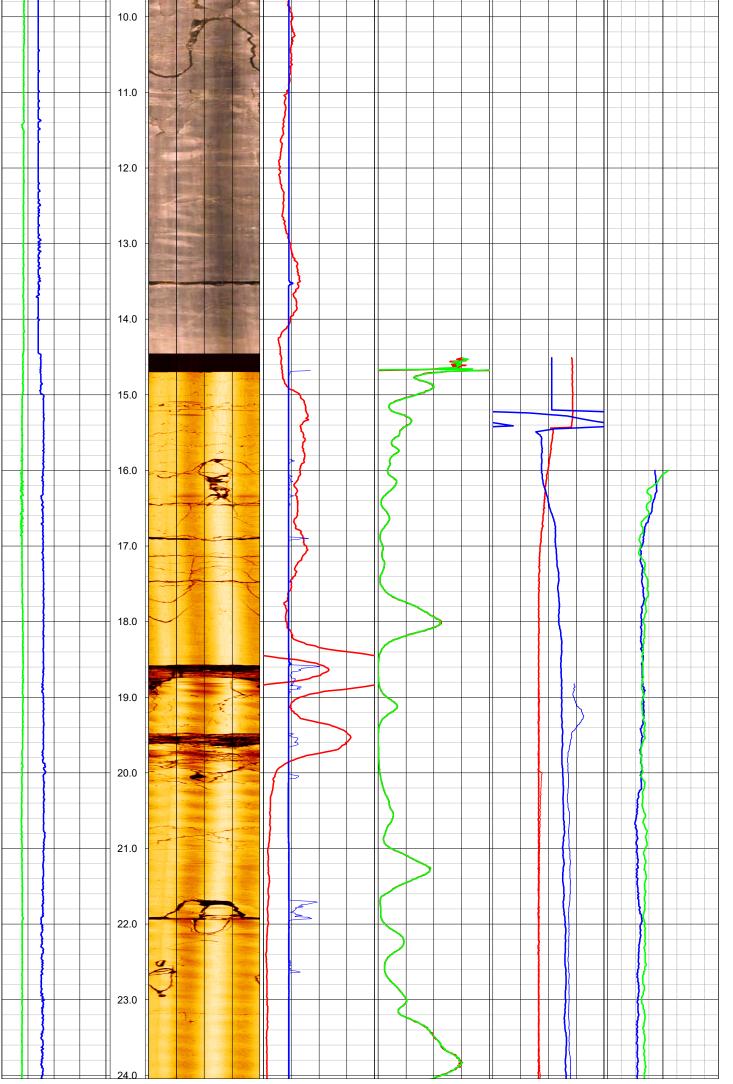
Optical and Acoustic run in both boreholes due to cloudy water. Boreholes pumped dry during pumped TC logging, not possible to run pumped flowmeter.

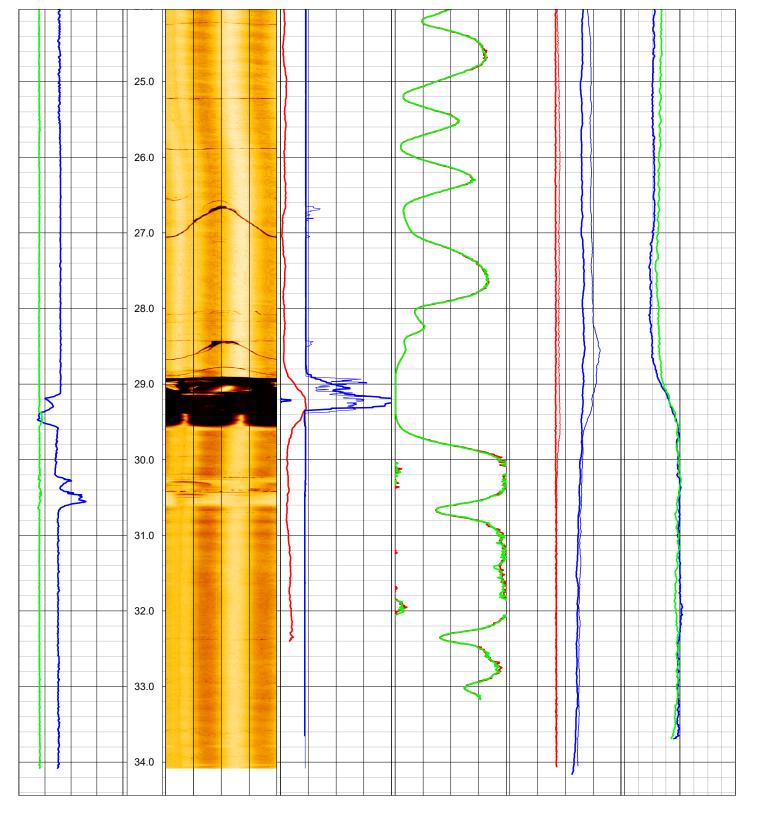
Time constraint

None

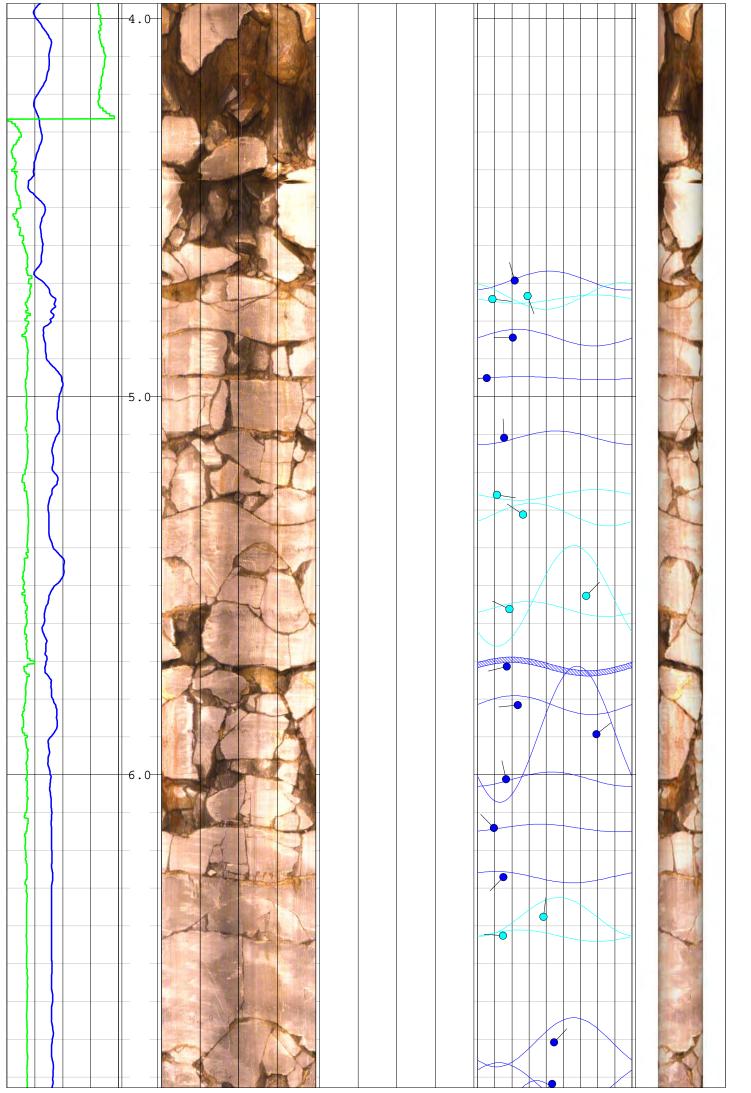
Borehole construction / casing

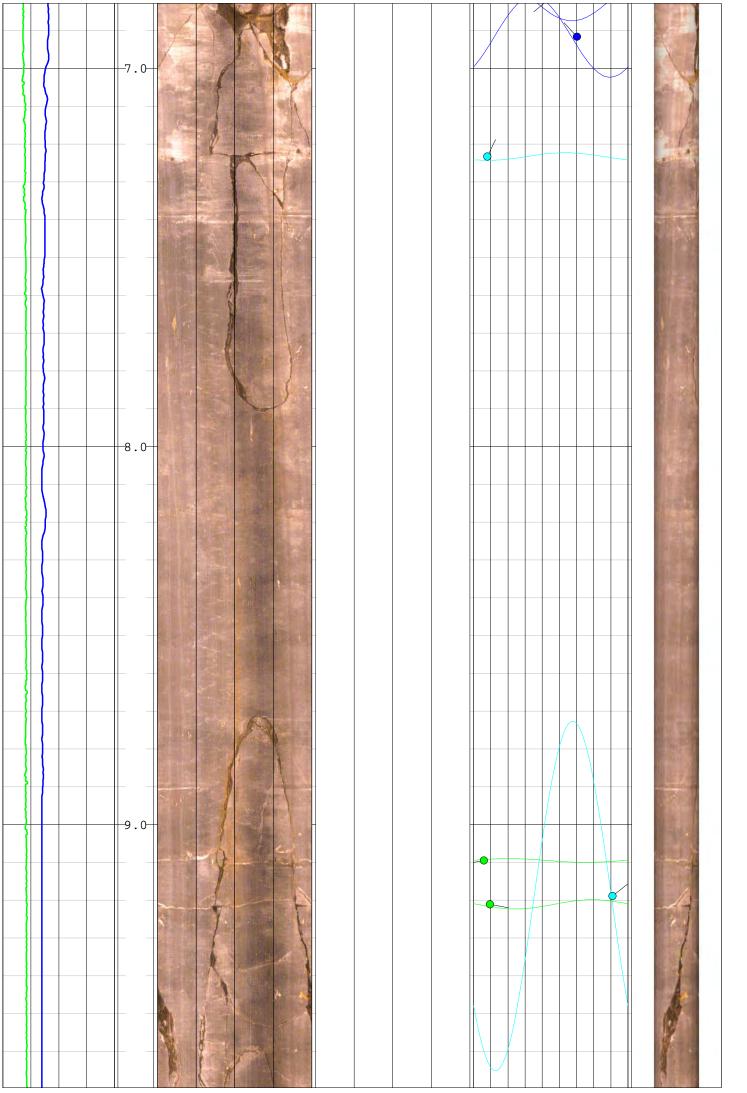

BH4 not cased deep enough - loose rock below casing. No casing in BH5.

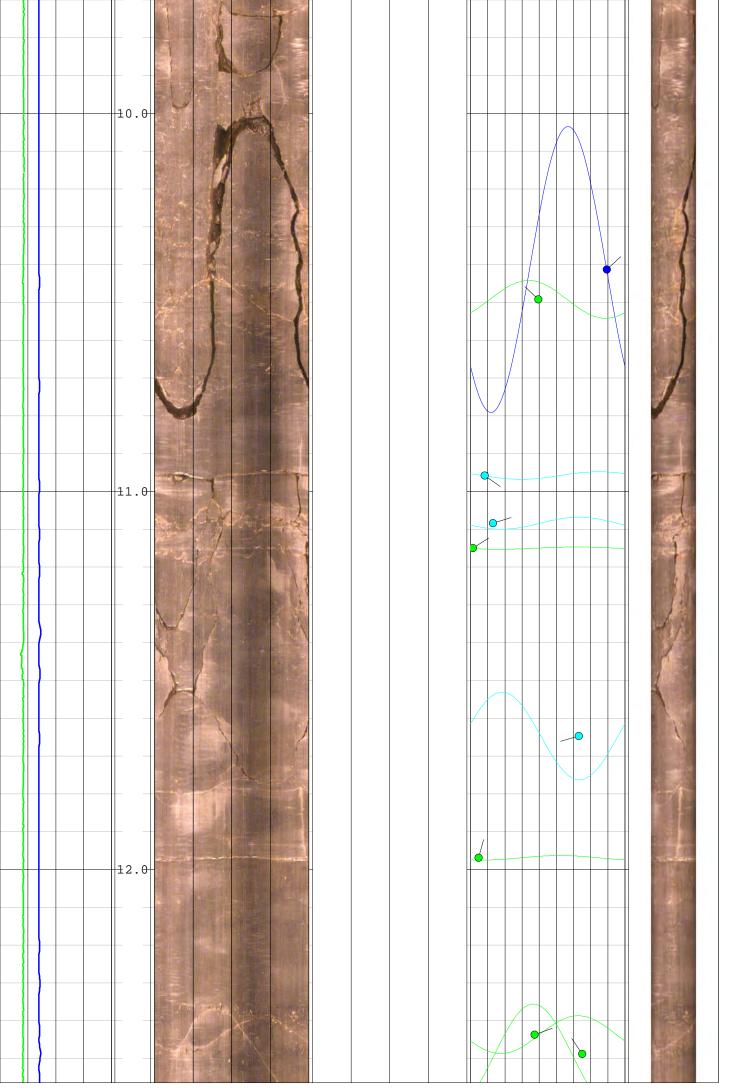

Appendix 1


Discontinuity Classification.

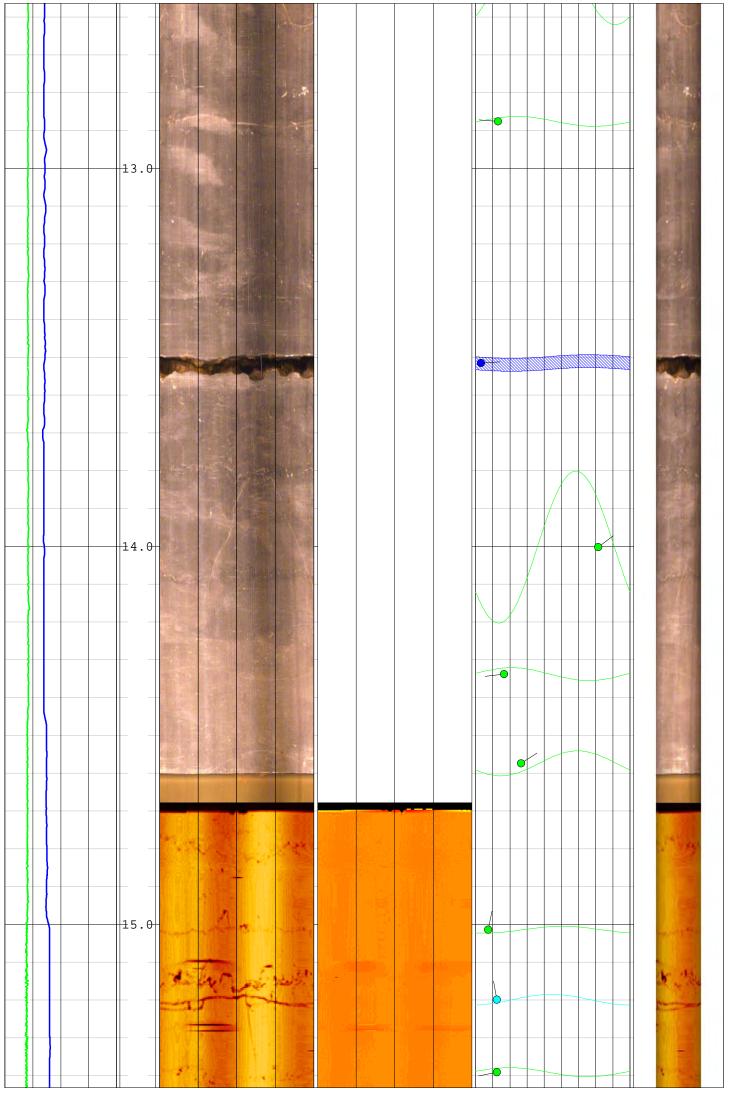
Colour	Classification Parameters	
Blue	An open break in the formation, that is	
	continuous across the entire image.	
Turquoise	A thin or closed break in the formation,	
	that is continuous or discontinuous	
	across the image.	
Green	That may be <u>continuous or</u>	
	discontinuous across the entire image.	
Red	Defines a feature generally metamorphic,	
	igneous or sedimentary in origin that may	
	be continuous or discontinuous across	
	the image, such as bedding and cross-	
	bedding, schistosity or gneissosity.	
ions Purple Intrusive features such as dykes		
	generally <u>continuous</u> across the image	
Black	Faint features which can not be classified.	
	Blue Turquoise Green Red Purple	

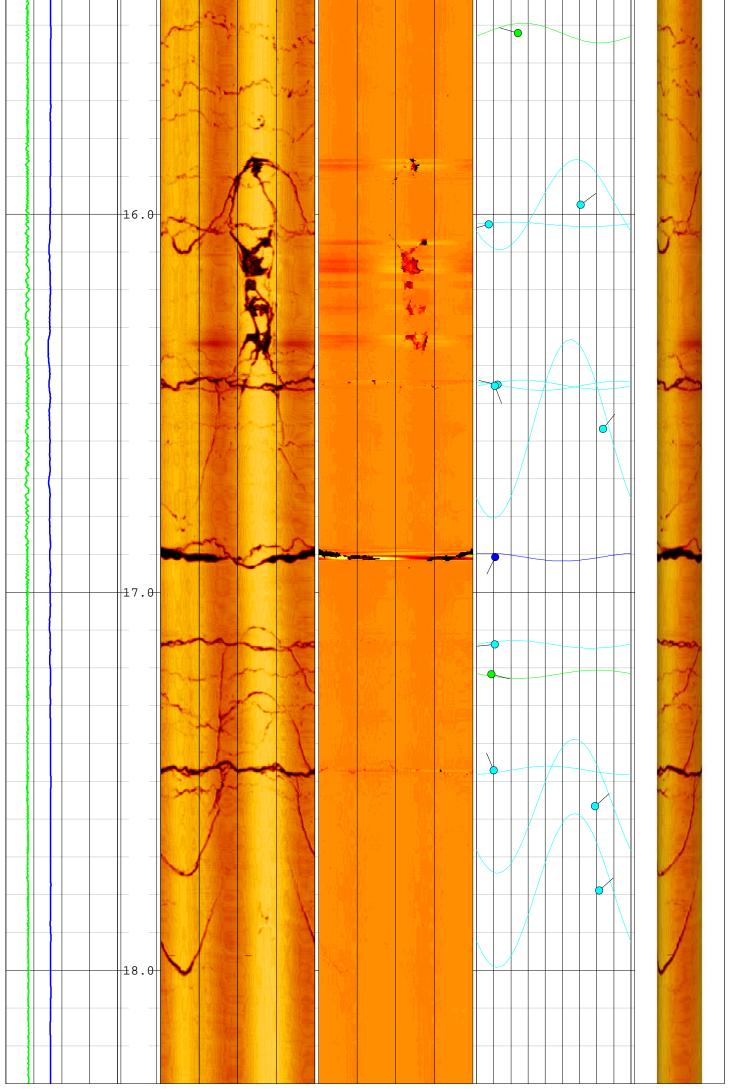

Appendix 2 **Geophysical Logs**

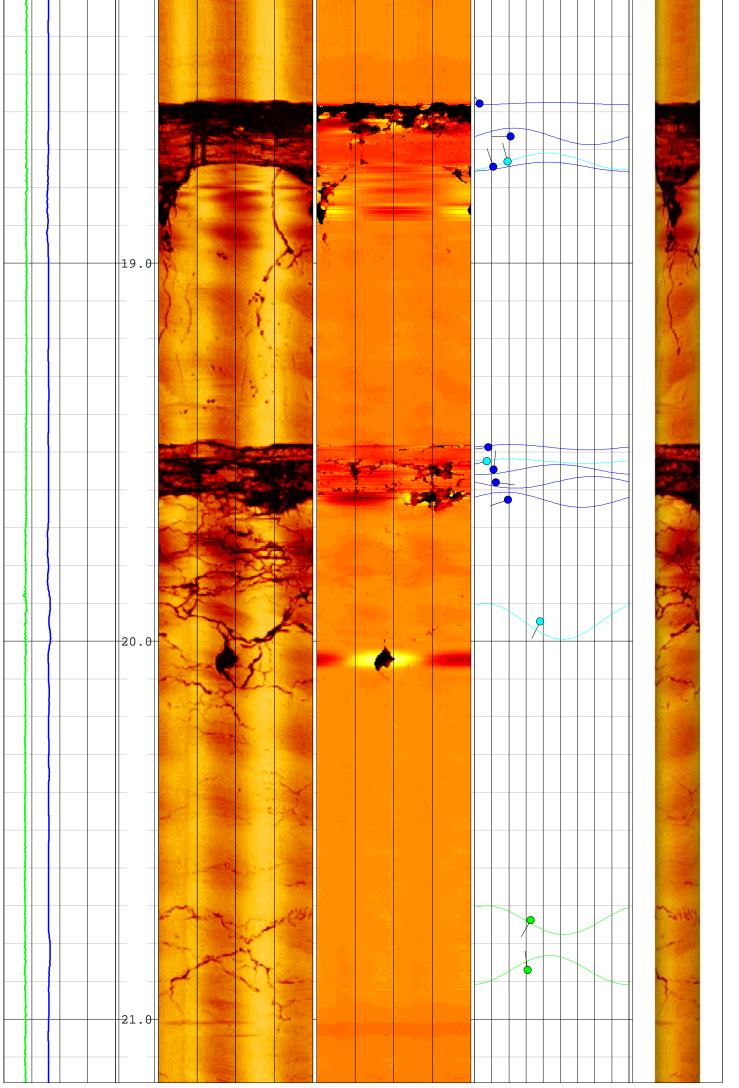


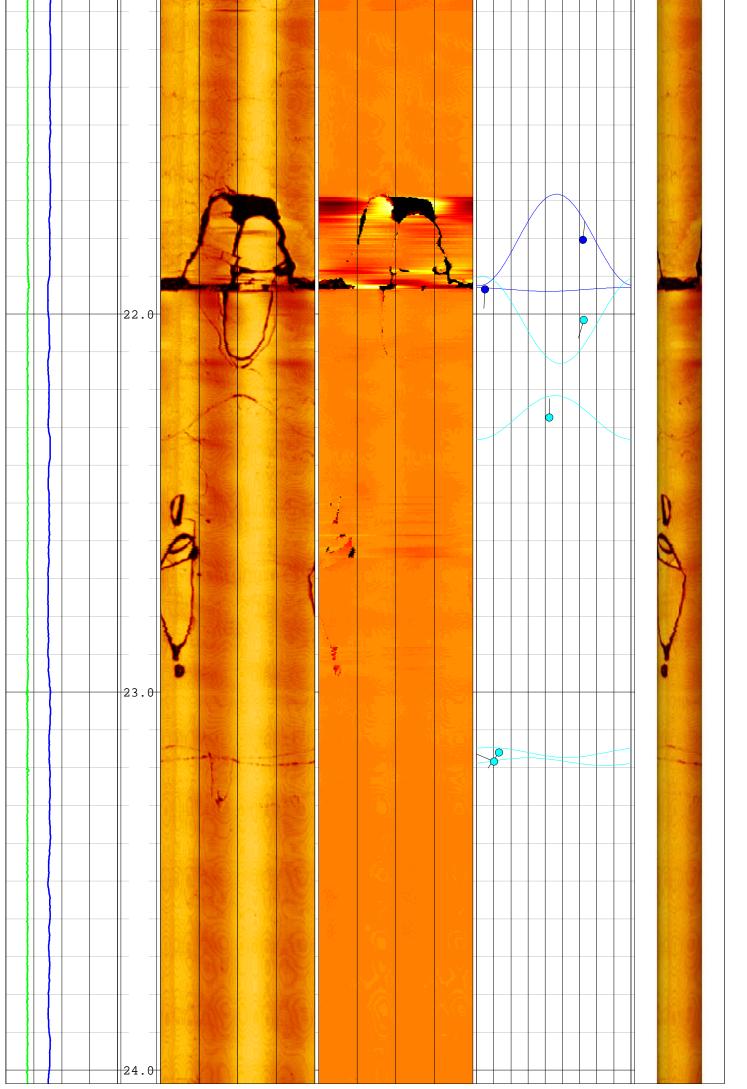


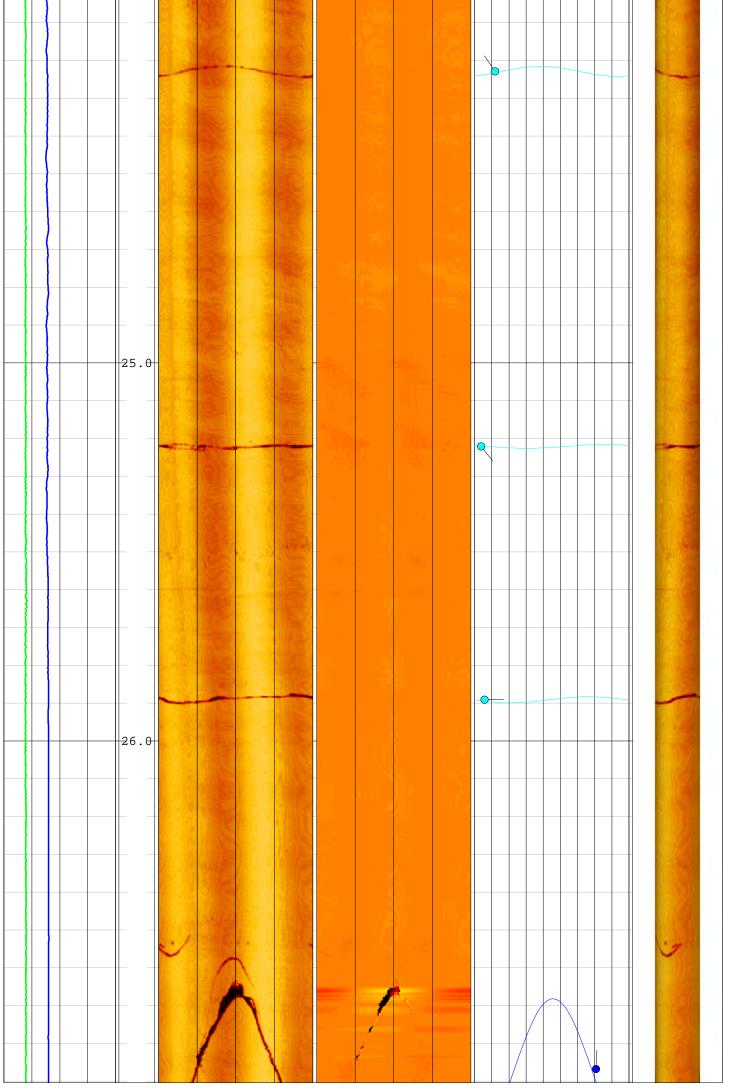
Borehole: BH4 Location: Lackagh Quarry Area: Co. Galway Grid Ref: Drilled Depth: (m) 35 Date: Logged Depth: (m) 34.0 Recorded By: Logging Datum: Ground Level Remarks: Rods pulled immediately be logged Interval: (m) 3.1 - 34.0 Fluid Level: (m) 14.6 Ref: BOREHOLE RECORD CASING RECORD Bit: (mm) From: (m) To: (m) Type Size: (mm) From:	og Type:			
Location: Lackagh Quarry Area: Co. Galway Grid Ref: Drilled Depth: (m) Logged Depth: (m) Logging Datum: Ground Level Logged Interval: (m) Fluid Level: (m) BOREHOLE RECORD Bit: (mm) From: (m) Area: Co. Galway Grid Ref: Red: Recorded By: Remarks: Rods pulled immediately be Ref: CASING RECORD	IMONA			
Drilled Depth: (m) 35 Date: 35 Logged Depth: (m) 34.0 Recorded By: I Logging Datum: Ground Level Remarks: Rods pulled immediately be Logged Interval: (m) 3.1 - 34.0 Ref: Fluid Level: (m) 14.6 Ref: BOREHOLE RECORD CASING RECORD Bit: (mm) From: (m) To: (m) Type Size: (mm) From: (m)	Image			
Logged Depth: (m) 34.0 Recorded By: I Logging Datum: Ground Level Remarks: Rods pulled immediately be Logged Interval: (m) 3.1 - 34.0 Ref: Fluid Level: (m) 14.6 Ref: BOREHOLE RECORD CASING RECORD Bit: (mm) From: (m) To: (m) Type Size: (mm) From: (m)	Elevati	on:		
Logging Datum: Ground Level Remarks: Rods pulled immediately be Logged Interval: (m) 3.1 - 34.0 Ref: Fluid Level: (m) 14.6 Ref: BOREHOLE RECORD CASING RECORD Bit: (mm) From: (m) To: (m) Type Size: (mm) From: (m)	8.12.15			
Logged Interval: (m) 3.1 - 34.0 Ref:	Recorded By: Rhys Powell			
Name	Remarks: Rods pulled immediately before logging.			
BOREHOLE RECORD CASING RECORD Bit: (mm) From: (m) To: (m) Type Size: (mm) From: (m)				
Bit: (mm) From: (m) To: (m) Type Size: (mm) From:				
	rom: (m)	To: (m)		
		3.1		
Tilt Depth Optical Image Travel Time Discon	ntinuities	3D Image		
G	80° 270° 0° uities - True	0°		
0 deg 360 0° 90° 180° 270° 0° 0	90	1		

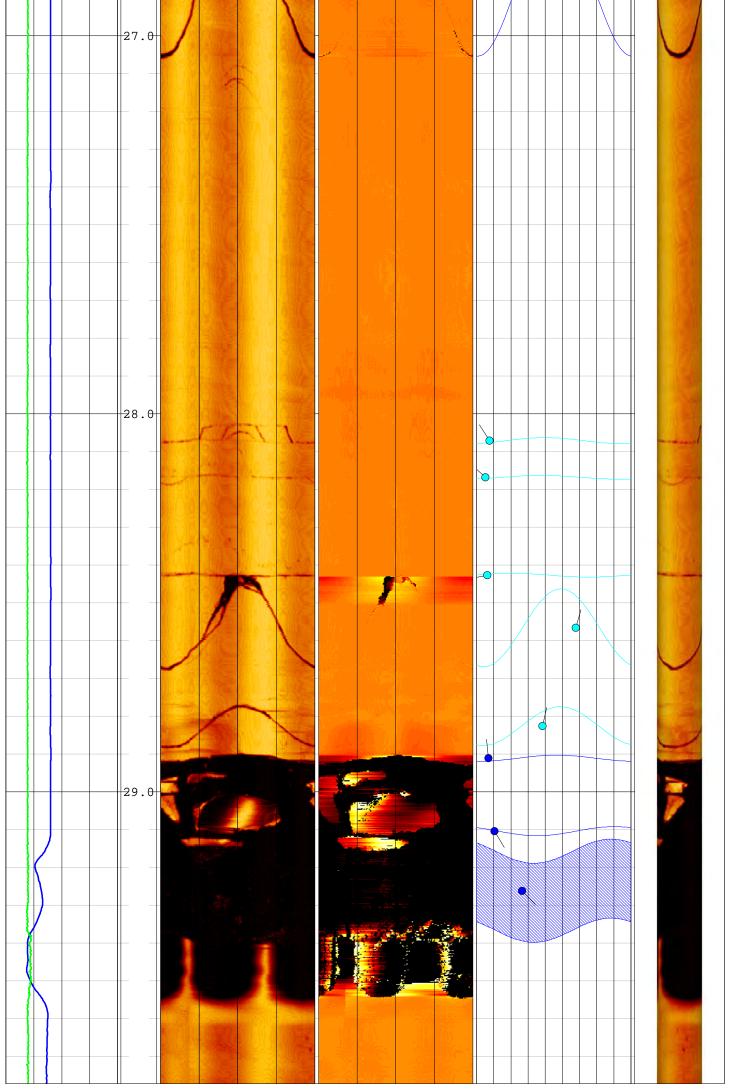



Page 2

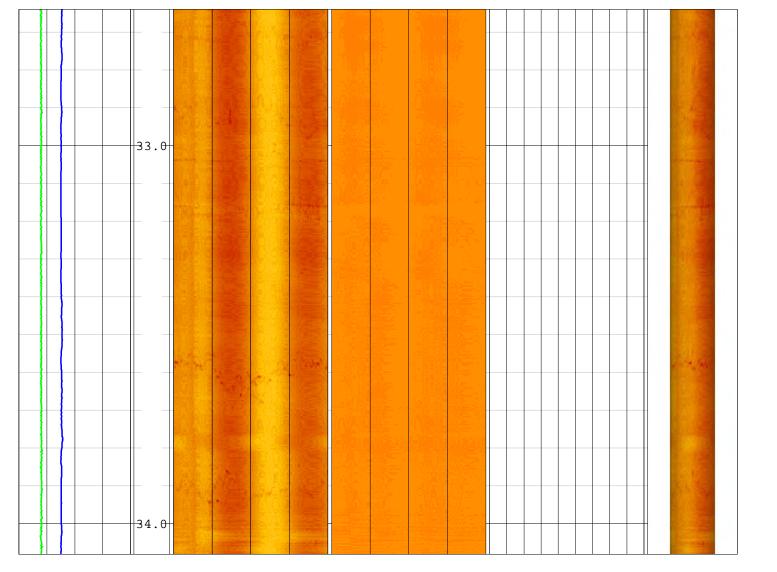


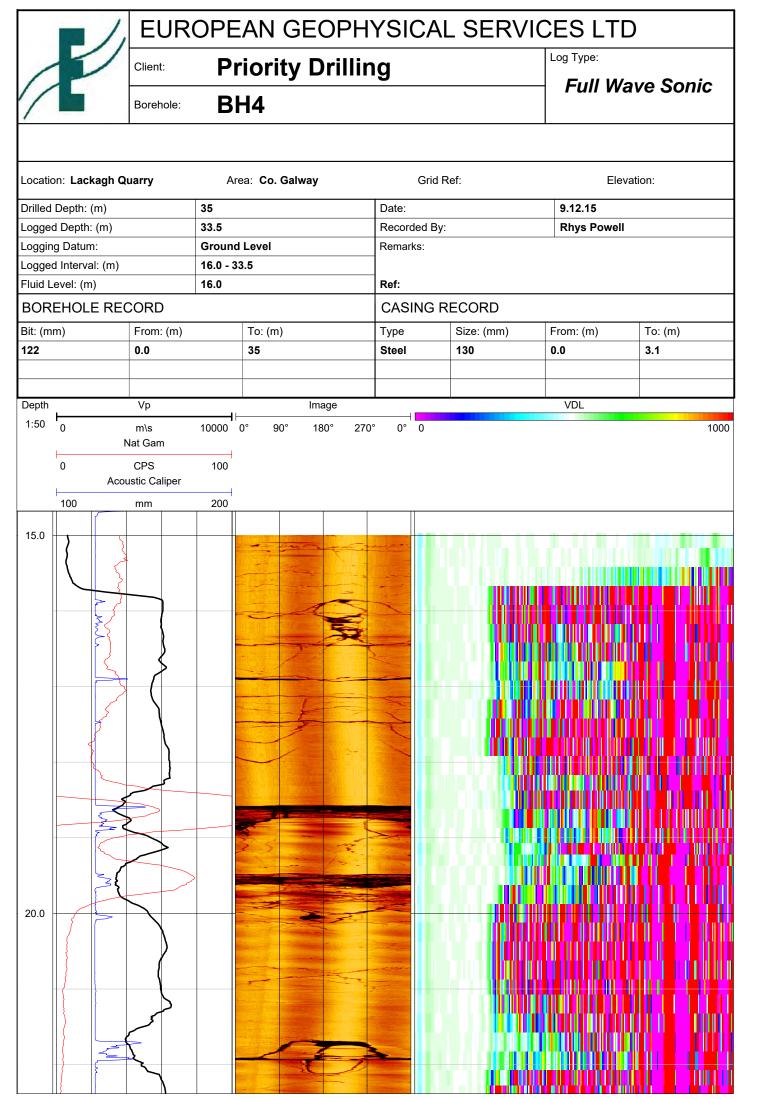


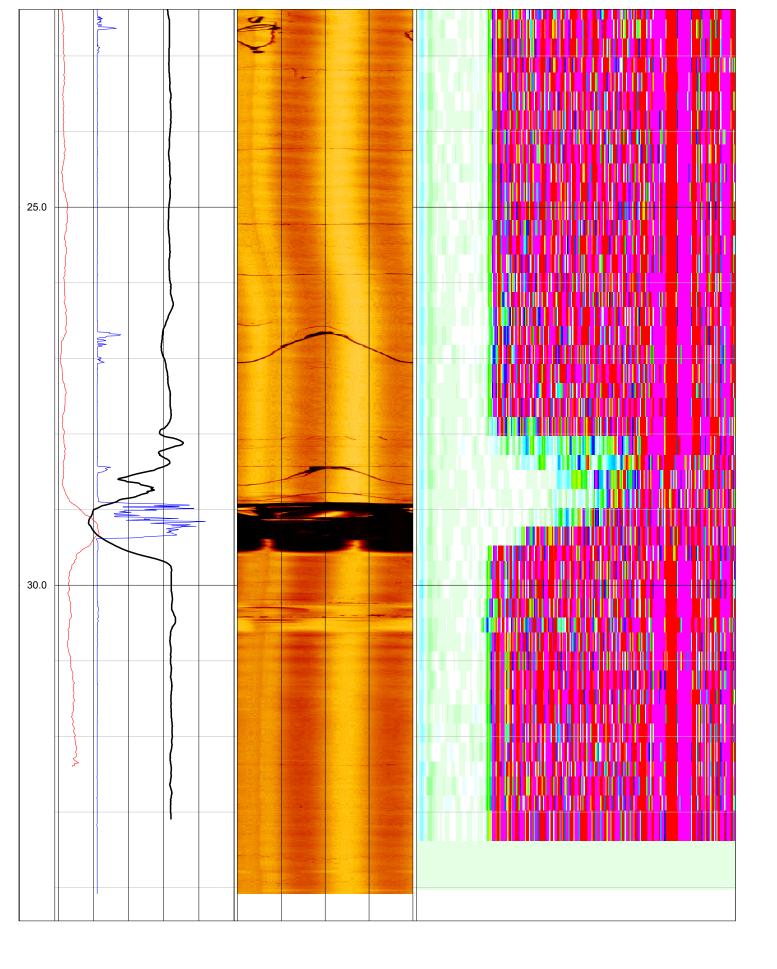

Page 4

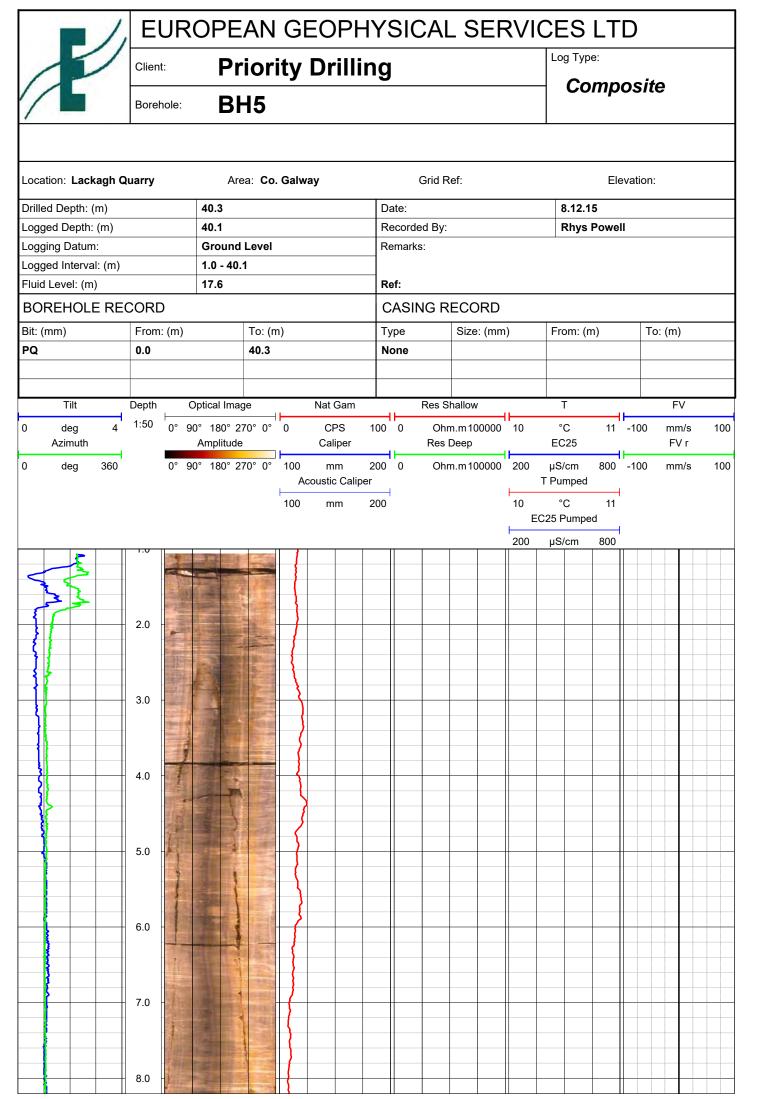


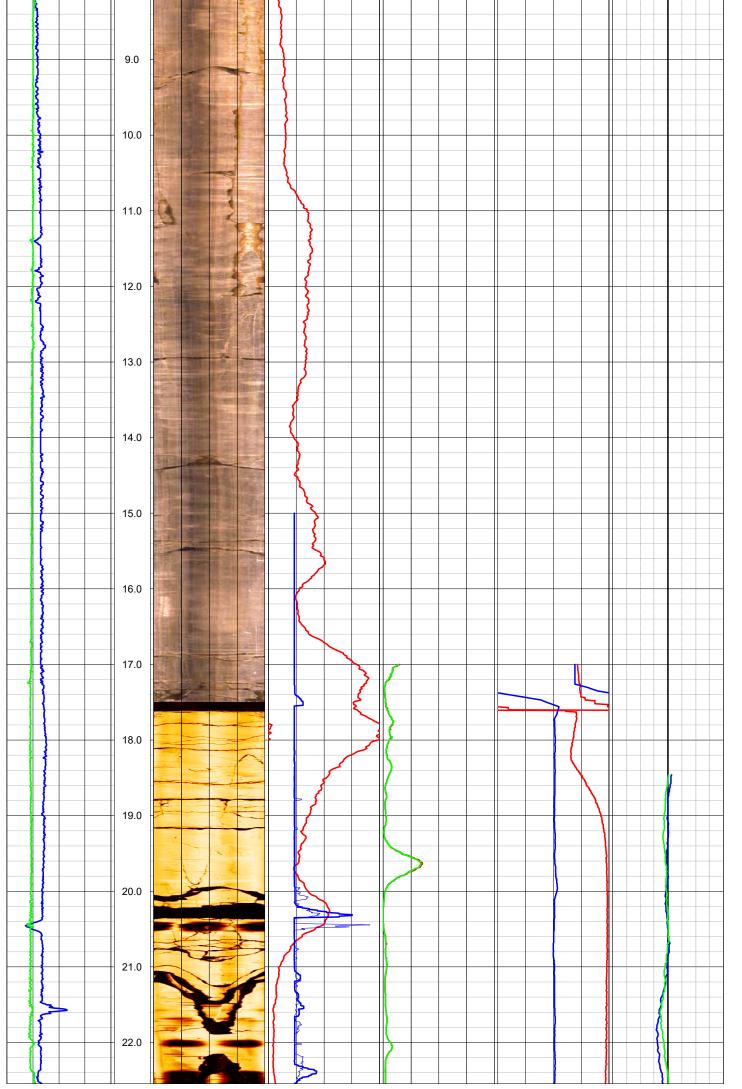


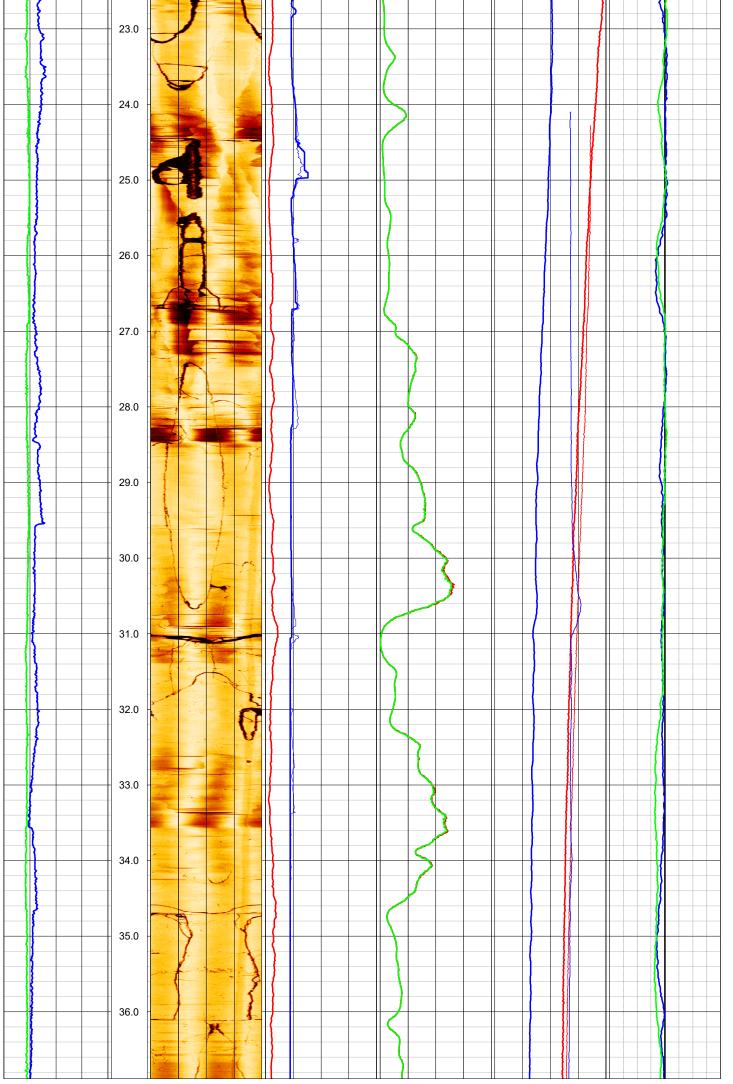


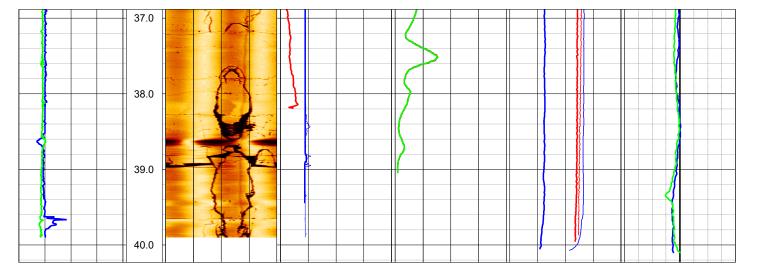


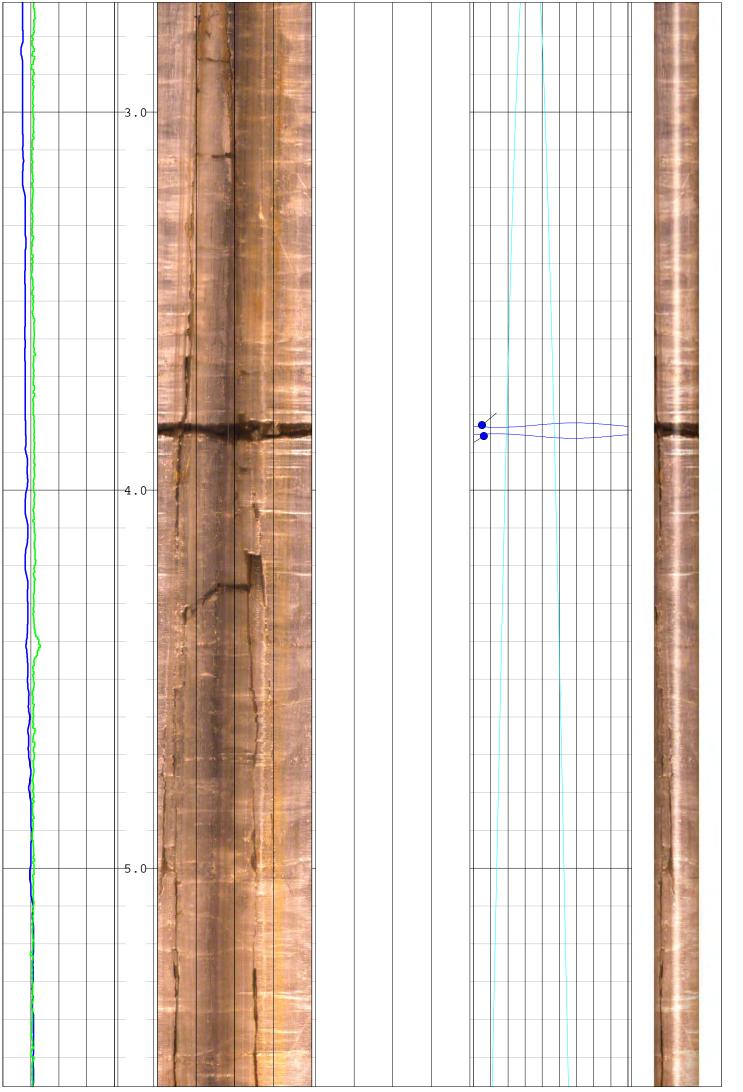


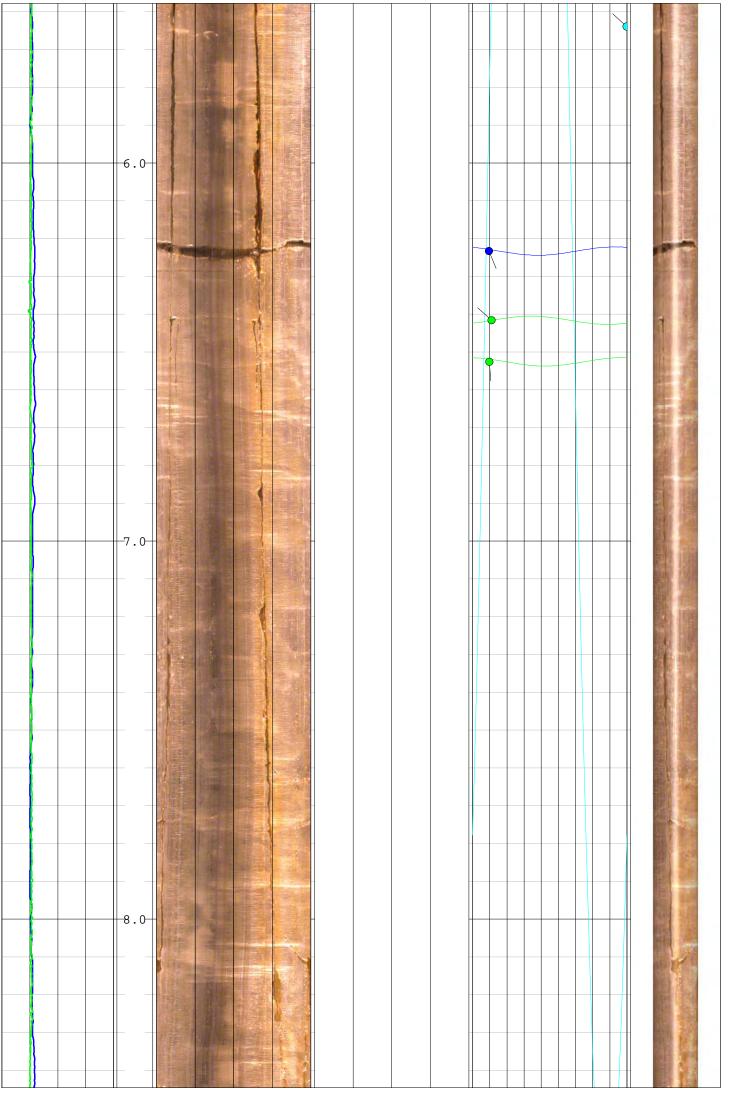


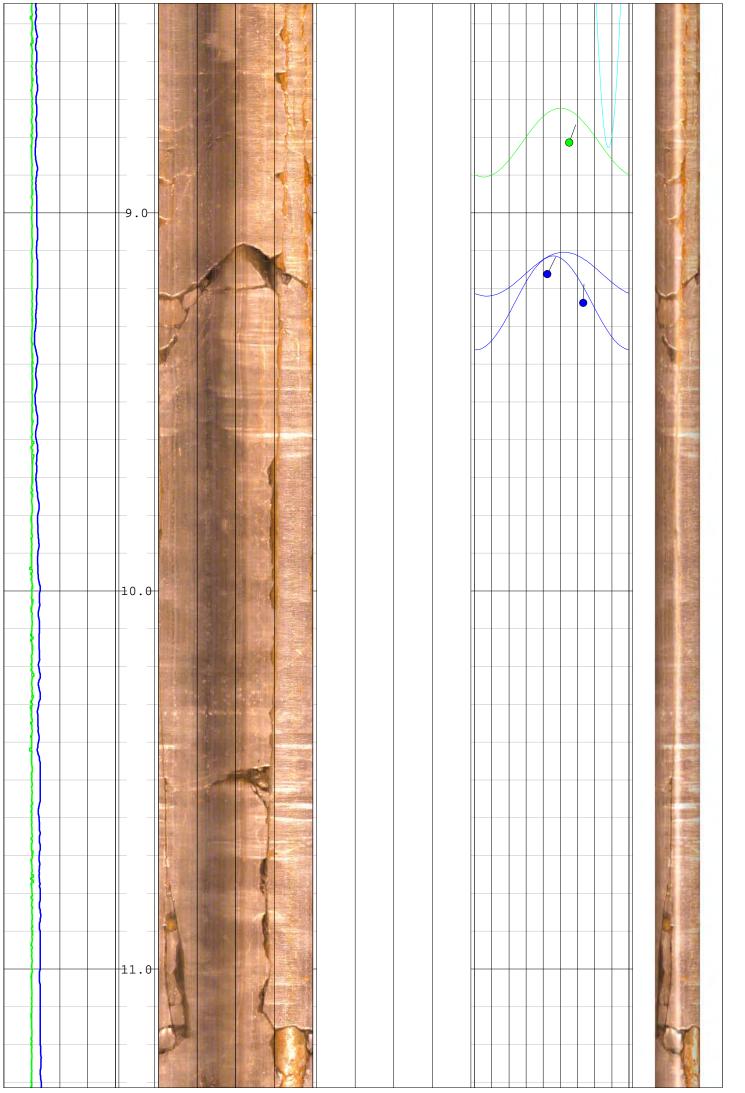


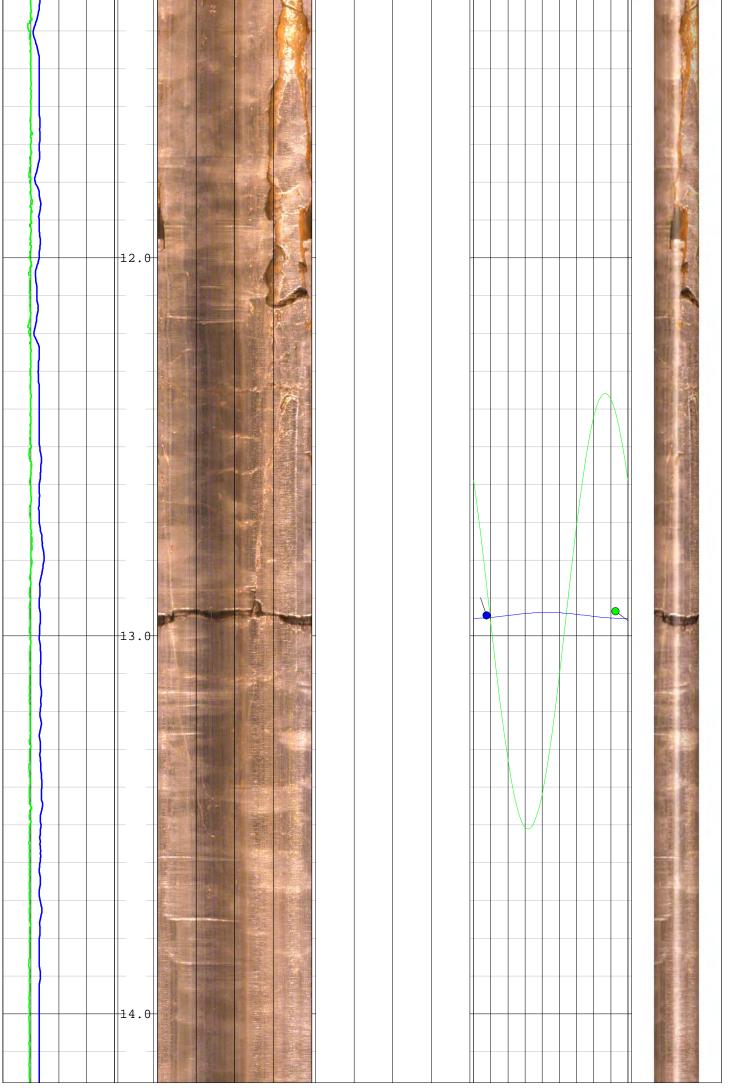


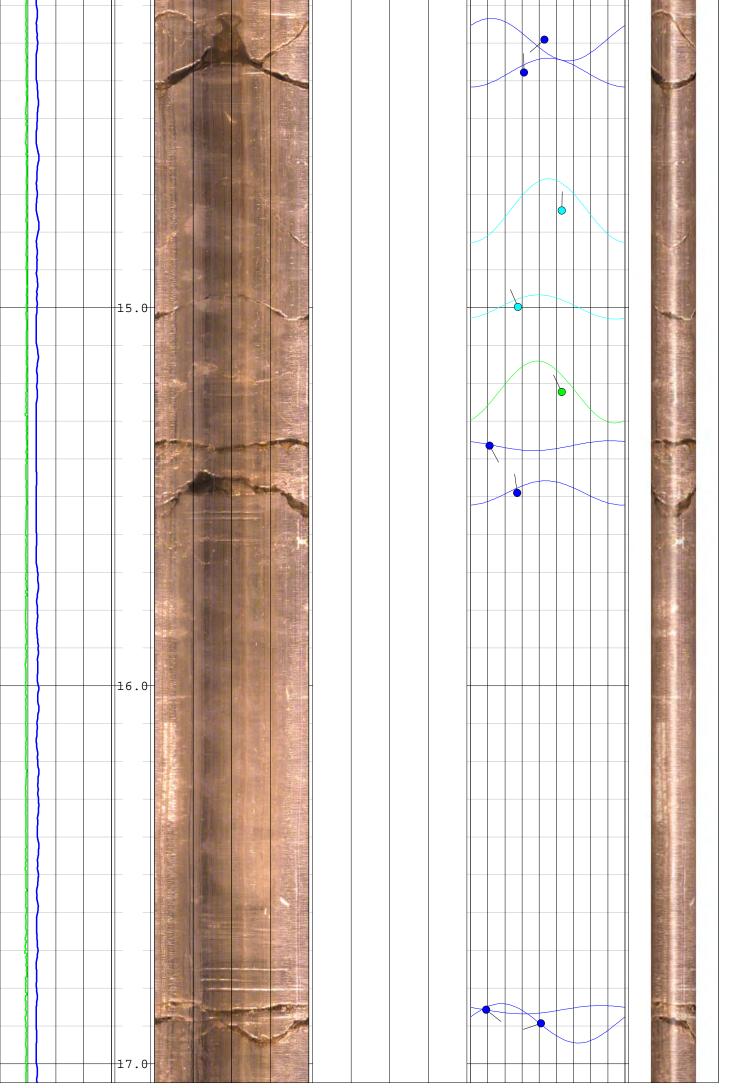


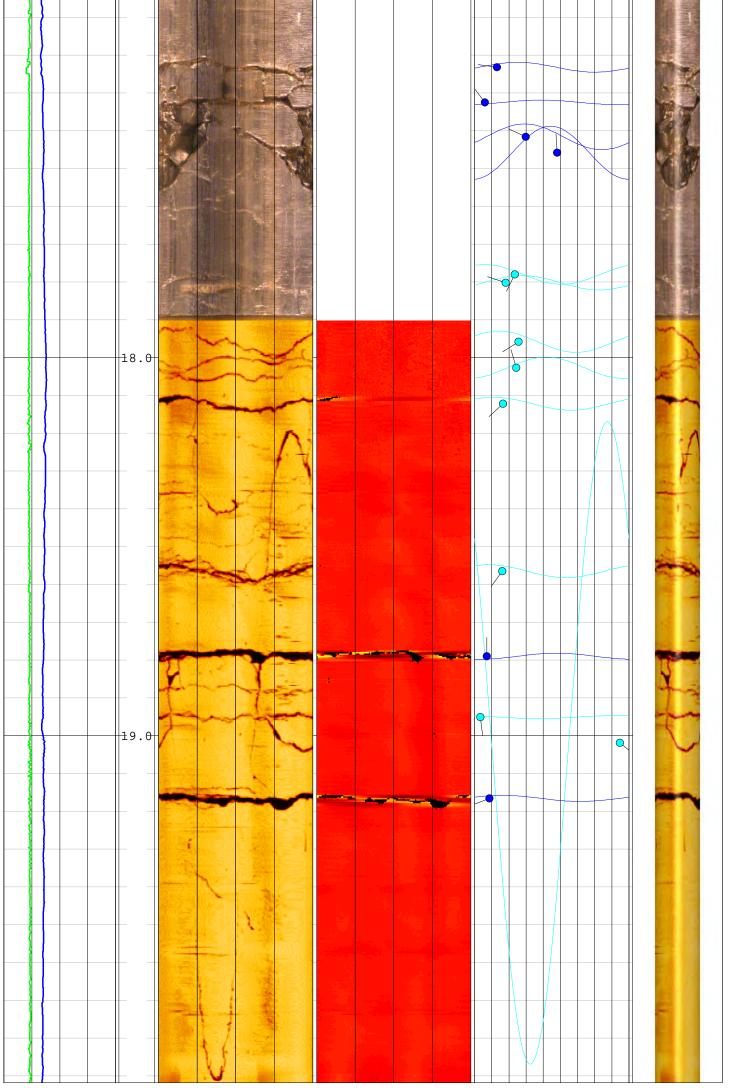


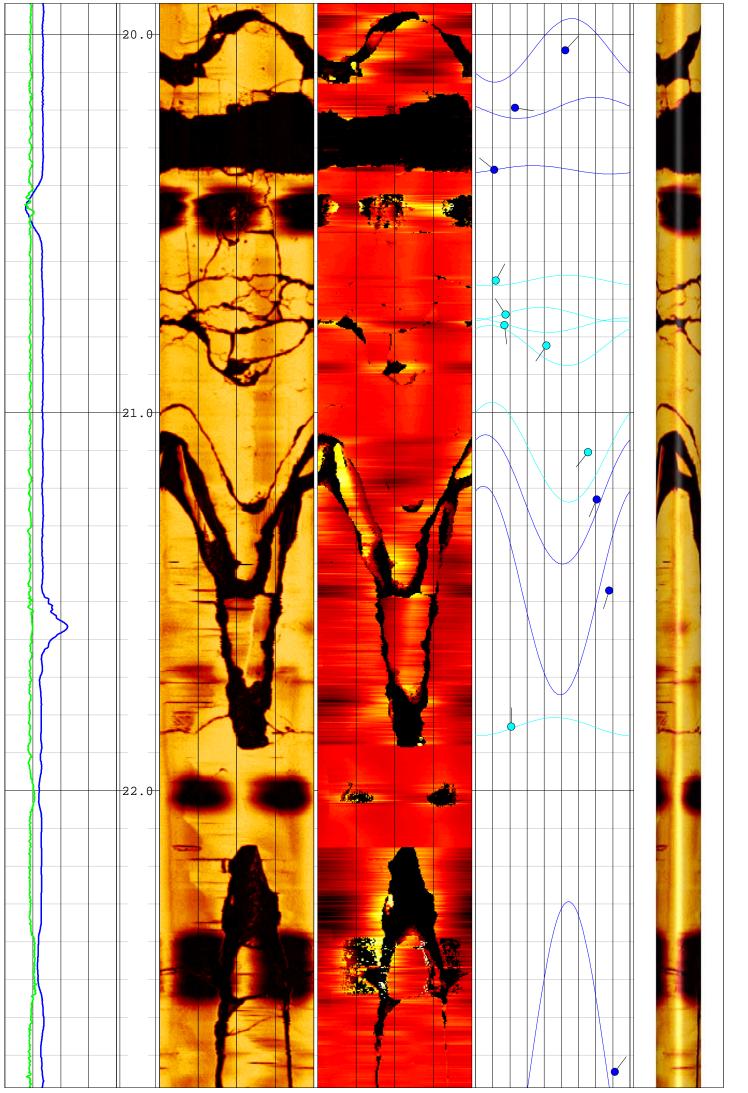


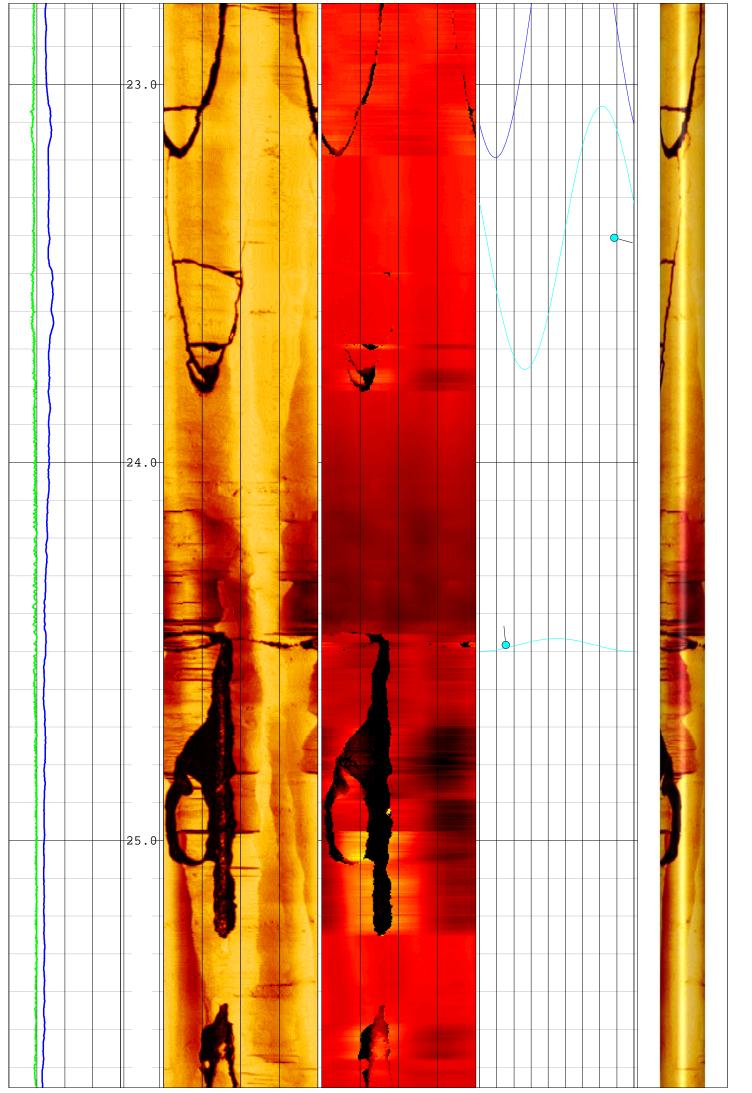

	EUROPEAN GEOPHYSICAL SERVICES LTD					
Client:	Priority Drilling	g	Log Type:			
Borehole:	BH5		Image			
ocation: Lackagh Quarry	Area: Co. Galway	Grid Ref:	Elevation:			
Orilled Depth: (m)	40.3	Date:	8.12.15			
ogged Depth: (m)	39.9	Recorded By:	Rhys Powell			
ogging Datum:	Ground Level	Remarks: Rods pulled immediately	before logging.			
ogged Interval: (m)	1.0 - 39.9					
uid Level: (m)	17.9	Ref:				
OREHOLE RECORD		CASING RECORD				
:: (mm) From: (m)	To: (m)	Type Size: (mm)	From: (m) To: (m)			
22 0.1		None				
Tilt Depth	Optical Image	Travel Time Dis	continuities 3D Image			
deg 4 1:10 _{0°} Azimuth	90° 180° 270° 0° 0° 90° Amplitude		180° 270° 0° 0° tinuities - True			
deg 360 0°	90° 180° 270° 0°	0	90			

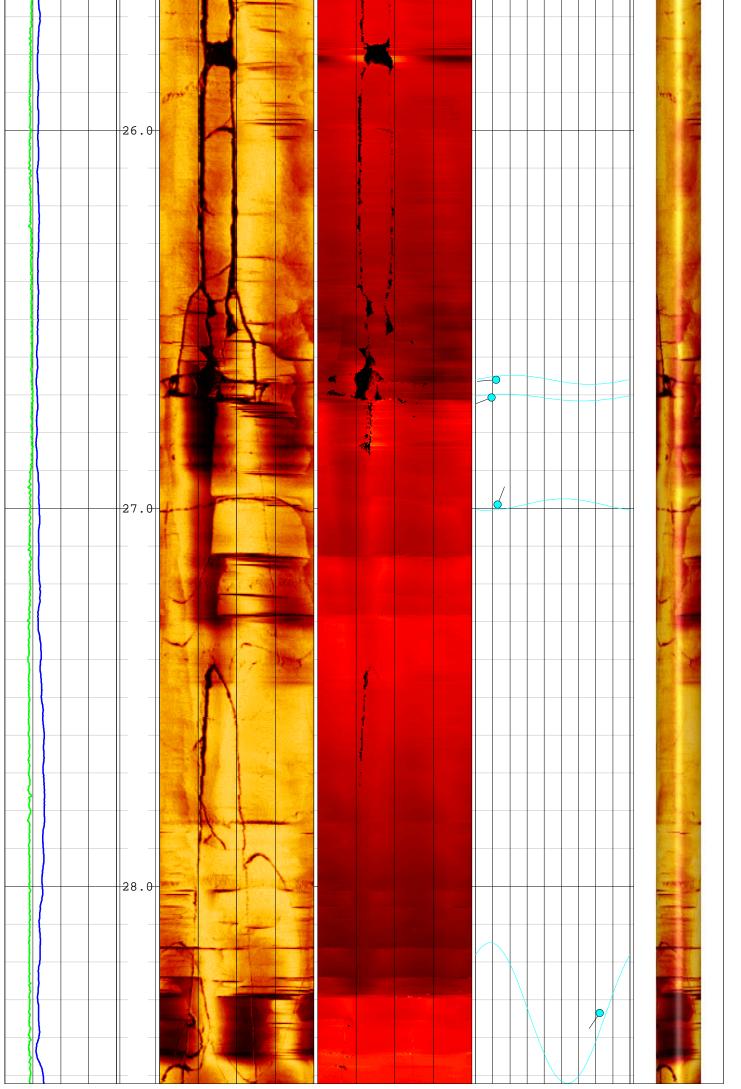



Page 2

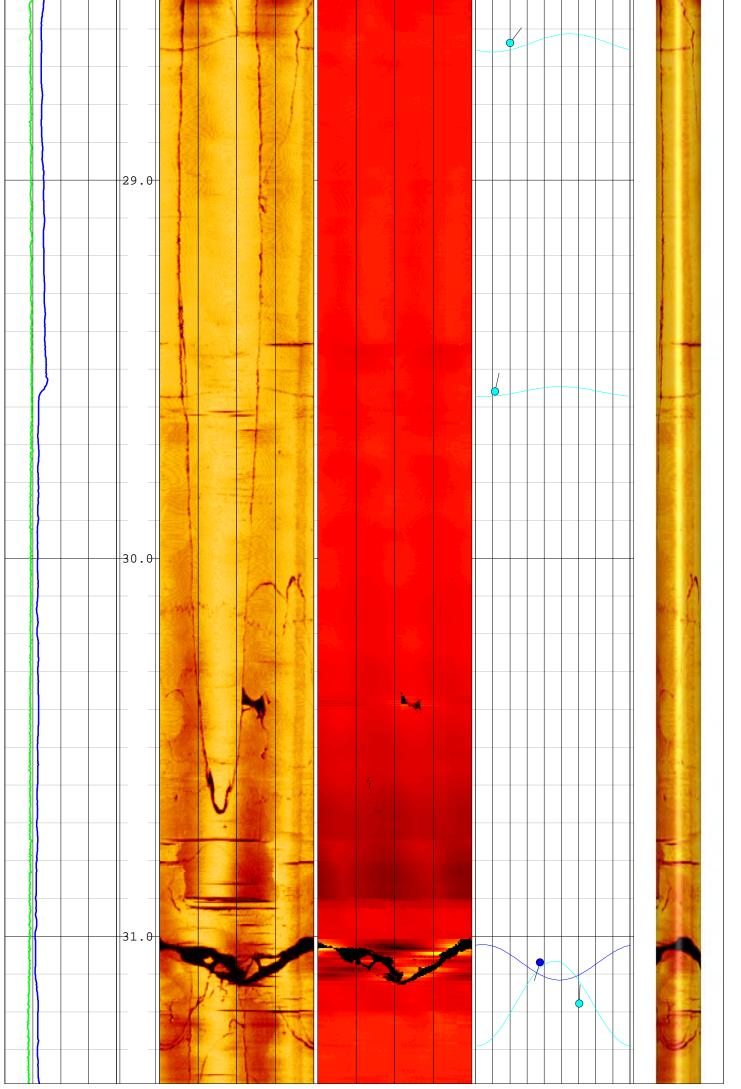

Page 3

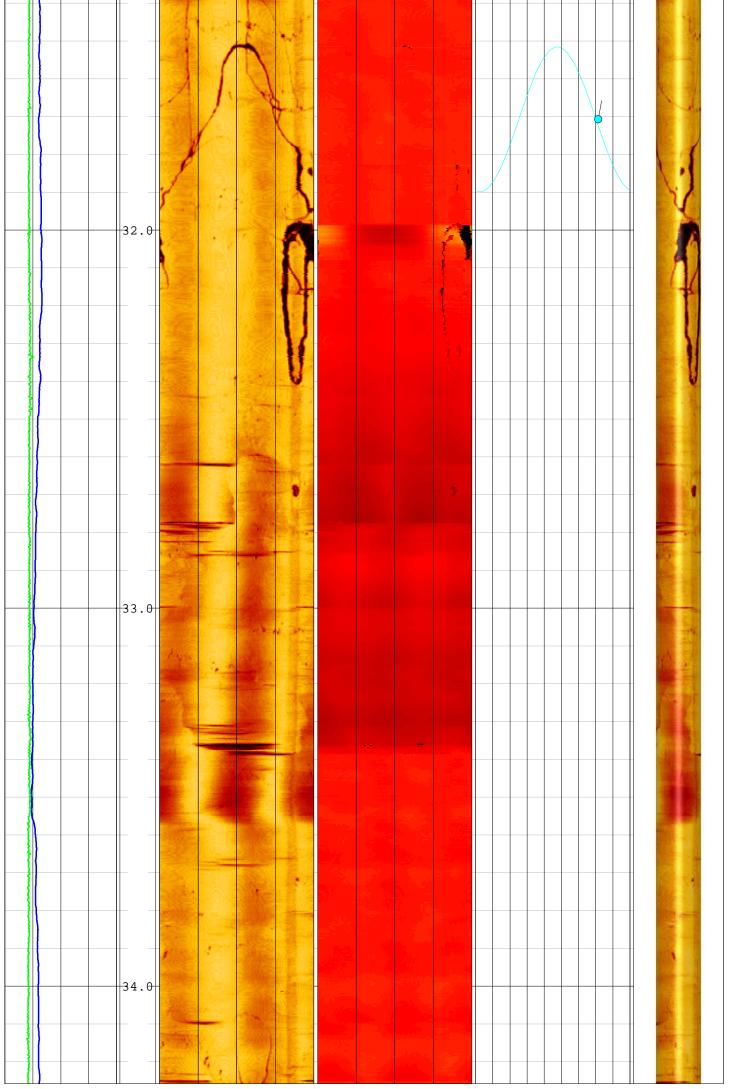




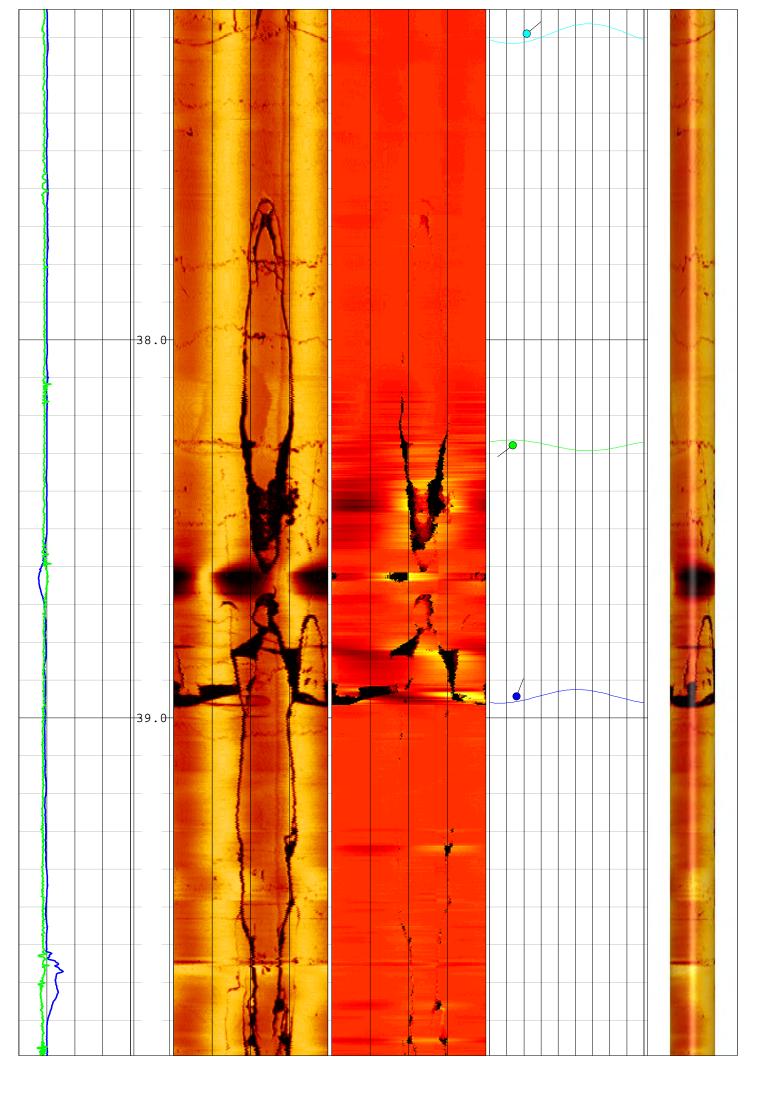


Page 6

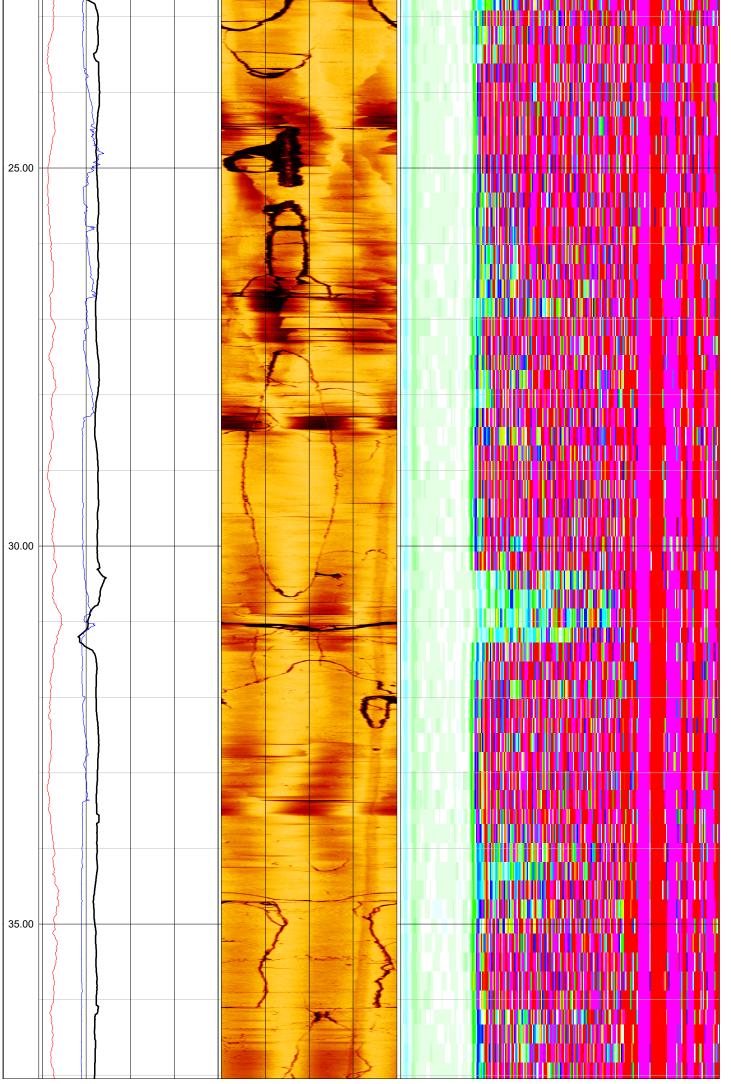


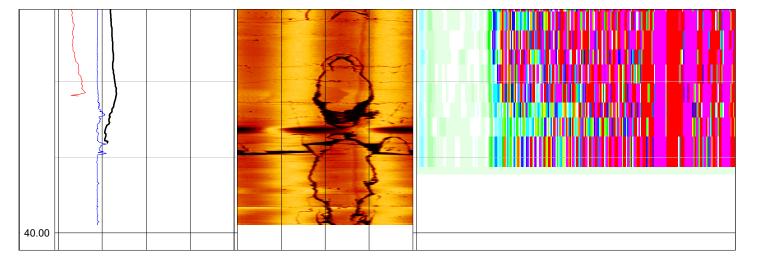


Page 10



Page 11




Page 12

	-/	EUROPEAN GEOPHYSICAL SERVICES LTD							
Client:			Priority Drilling			Log Type: Full Wave Sonic			
/		Borehole:	Bł	15			Full VV		
Location	on: Lackagh C	Quarry	Are	ea: Co. Galway	Grid R	ef:	Elev	ration:	
Drilled	Depth: (m)		40.3		Date:		8.12.15		
Logge	d Depth: (m)		39.2		Recorded By:		Rhys Powell		
	ng Datum:		Ground		Remarks:				
	d Interval: (m)		16.9 - 39	9.2					
Fluid L	evel: (m)		16.9		Ref:				
BOR	EHOLE RE	CORD			CASING R	ECORD			
Bit: (m	ım)	From: (m)		To: (m)	Туре	Size: (mm)	From: (m)	To: (m)	
122		0.0		40.3	None				
D ::		<u> </u>		A			\/D!		
Depth	<u> </u>	Vp		Amplitude			VDL		
1:50	0	m∖s Nat Gam	20000	0° 90° 180° 270°	0° 0			1000	
	0	CPS oustic Caliper	100						
13.00	100	mm	200						
20.00									

APPENDIX VII

10% Fines

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Ten Per Cent Fines Value (TFV) of aggregate

sample 10mm and greater in accordance with BS 812: Part 111: 1990.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Bulk Sample

Unknown

Unknown

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Aggregate

Target Specification N/A

RESULTS:

Ten per cent fines value (DRY) = 150 kN

Comments

Has the "as received material" been altered by crushing in the laboratory: Yes

Report to nearest 10kN for forces of 100kN or more report to nearest 5kN for forces less than 100kN.

Certificate
Prepared by:-

Mothaw Save

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elizabeth

Eric Goulden

Aggregate Abrasion Value

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Aggregate Abrasion Value (AAV) of aggregate

sample, in accordance with BS EN 1097-8 : 2009 Annex A

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Bulk Sample
Unknown

Unknown

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Aggregate

Target Specification: N/A

RESULTS:

Aggregate Abrasion Value (Test 1) = 12.1 (three significant figures)
Aggregate Abrasion Value (Test 2) = 12.4 (three significant figures)

Mean Aggregate Abrasion Value = 12 (two significant figures)

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elizabeth

Eric Goulden

Aggregate Crushing Value

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Aggregate Crushing Value (ACV) of aggregate

sample, in accordance with BS 812: Part 110: 1990.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Bulk Sample

Unknown

Unknown

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Aggregate

Target Specification: N/A

RESULTS:

Aggregate Crushing Value (%) = 23 (nearest whole number)

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elizabeth

Eric Goulden

Aggregate Impact Value

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Aggregate Impact Value (AIV) of aggregate sample –

DRY, in accordance with BS 812: Part 112: 1990.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Bulk Sample
Unknown

18/01/2016

21/02/2016

Unknown

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Aggregate

Target Specification: N/A

RESULTS:

Aggregate Impact Value (DRY) (%) = 17 (nearest whole number)

Comments

If the AIV is greater than 30 then, the results should be treated with caution.

No departure from specified procedure.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elpulan

Eric Goulden

Deformability in Uniaxial Compression and Brazil Tests

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland REP. Of Ireland. VAT No: 9D53971I Date: 15th February 2016 Test Report Ref. STR: 443020

Page 1 of 12

LABORATORY TEST REPORT

TEST REQUIREMENTS: Unconfined compressive strength, elastic moduli & indiect tensile strength

by Brazil.

SAMPLE DETAILS:

Certificate of sampling received:
Laboratory Ref. No:
S56158
Client Ref. No:
Various
Date and Time of Sampling:
Unknown
Date of Receipt at Lab:
Date of Start of Test.:
Sampling Location:
Various

Name of Source: Lackagh Quarry SI

Method of Sampling:

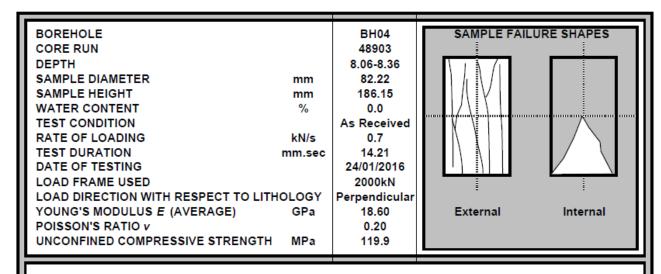
Sampled By:

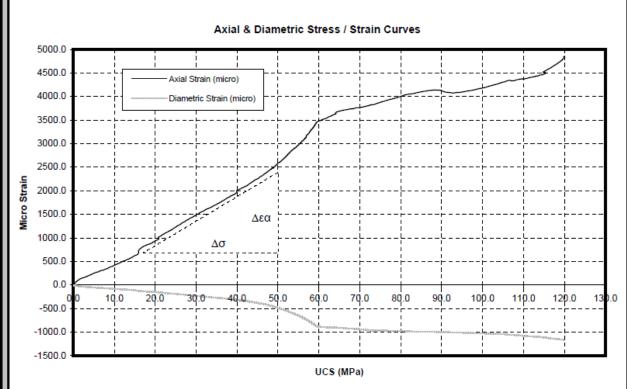
Aggregate Type and Nominal Size:

Target Specification:

Unknown
Client
Core
N/A

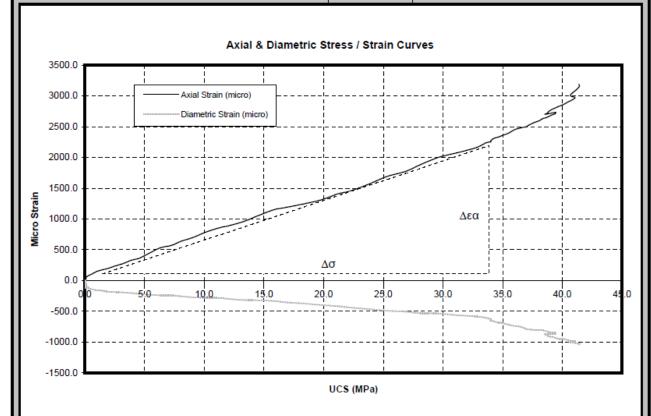
COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE


The work was carried out by our competent, sub contracted laboratory.


RESULTS

() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager (✓) N Dumbarton Assistant Laboratory Manager

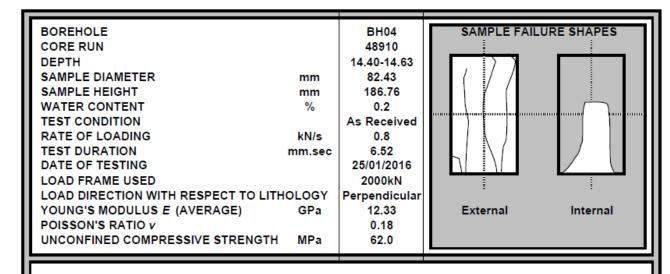
Test Report Ref. STR: 443020 Page 2 of 12

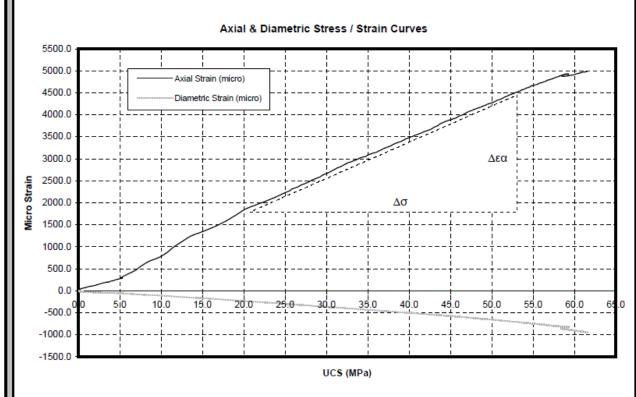


Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 16.6MPa and 50.1MPa

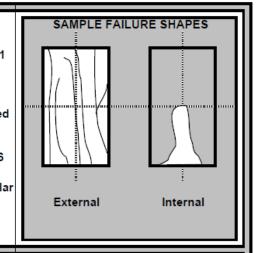
Test Report Ref. STR: 443020 Page 3 of 12

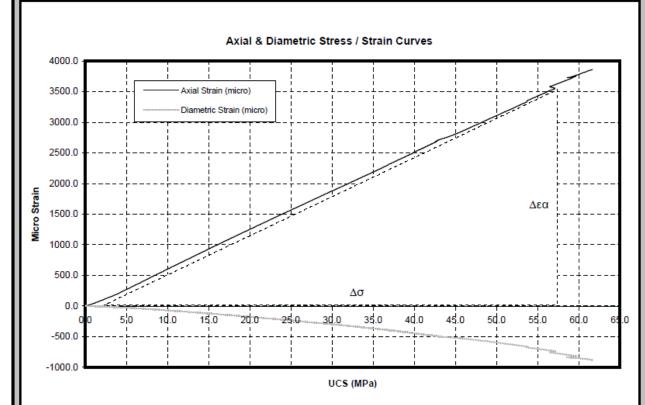



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 1MPa and 34MPa

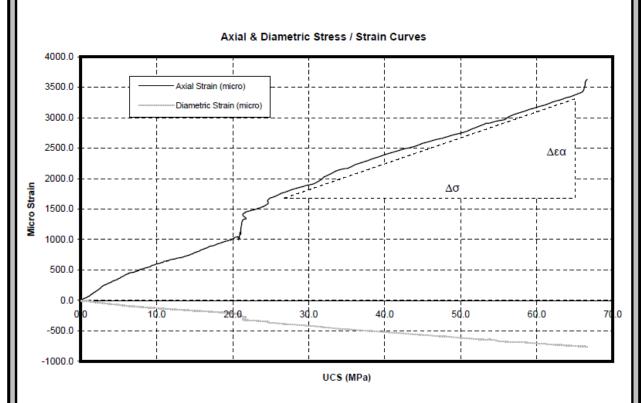
Test Report Ref. STR: 443020 Page 4 of 12




Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 20.2MPa and 52.9MPa

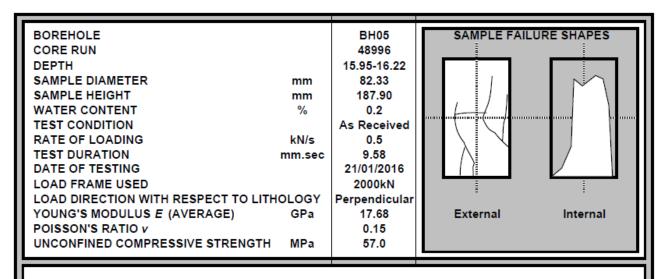
Test Report Ref. STR: 443020 Page 5 of 12

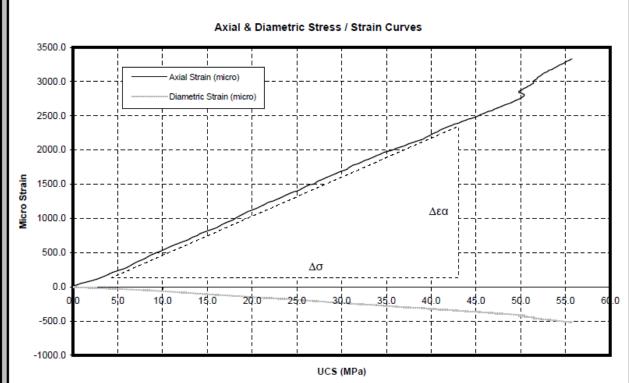

Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 2MPa and 57.5MPa

Test Report Ref. STR: 443020 Page 6 of 12

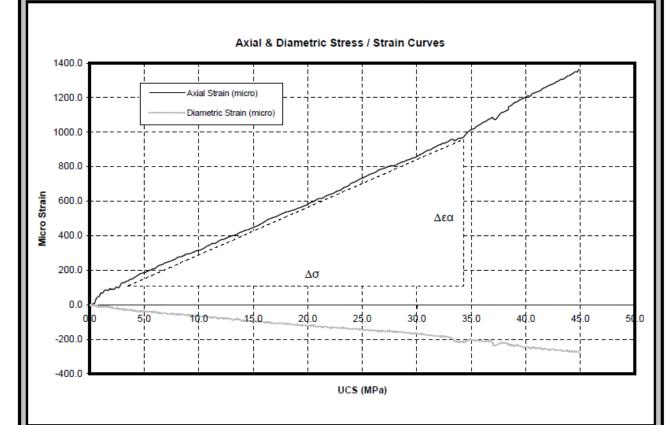
BOREHOLE CORE RUN DEPTH SAMPLE DIAMETER mm SAMPLE HEIGHT mm WATER CONTENT % TEST CONDITION RATE OF LOADING kN/ TEST DURATION mm.s DATE OF TESTING LOAD FRAME USED LOAD DIRECTION WITH RESPECT TO LITHOLOGYOUNG'S MODULUS E (AVERAGE) GP. POISSON'S RATIO V UNCONFINED COMPRESSIVE STRENGTH MP.	SAMPLE FAILURE SHAPES IT External Internal
--	---




Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 25.9MPa and 65.1MPa

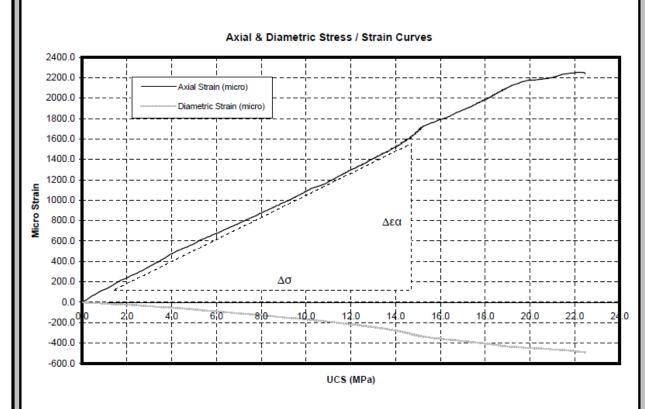
Test Report Ref. STR: 443020 Page 7 of 12


Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 3.6MPa and 43MPa

Test Report Ref. STR: 443020 Page 8 of 12

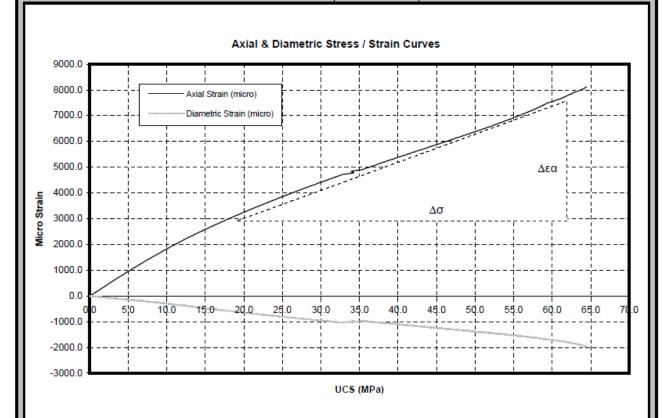
BOREHOLE CORE RUN DEPTH SAMPLE DIAMETER mm SAMPLE HEIGHT mm WATER CONTENT % TEST CONDITION RATE OF LOADING kN/s TEST DURATION mm.se DATE OF TESTING LOAD FRAME USED LOAD DIRECTION WITH RESPECT TO LITHOLOGY YOUNG'S MODULUS E (AVERAGE) GPa POISSON'S RATIO V UNCONFINED COMPRESSIVE STRENGTH MPa	BH05 50706 24.05-24.30 81.06 187.95 0.1 As Received 0.7 5.38 24/01/2016 2000kN Perpendicular 36.97 0.20 44.9
--	--


Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 3.1MPa and 34.3MPa

Test Report Ref. STR: 443020 Page 9 of 12

BOREHOLE		BH05	SAMPLE FAII	LURE SHAPES
CORE RUN		50708		
DEPTH		25.20-25.40	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
SAMPLE DIAMETER	mm	82.08	/ /	
SAMPLE HEIGHT	mm	190.12		
WATER CONTENT	%	0.1	\	
TEST CONDITION		As Received		
RATE OF LOADING	kN/s	0.6	<i>/</i>	
TEST DURATION	mm.sec	3.21		
DATE OF TESTING		25/01/2016		
LOAD FRAME USED		2000kN		
LOAD DIRECTION WITH RESPECT TO L	ITHOLOGY	Perpendicular		
YOUNG'S MODULUS E (AVERAGE)	GPa	9.10	External	Internal
POISSON'S RATIO V		0.21		
UNCONFINED COMPRESSIVE STRENG	ГН МРа	22.6		


Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 1.2MPa and 14.8MPa

Test Report Ref. STR: 443020 Page 10 of 12

BOREHOLE CORE RUN DEPTH SAMPLE DIAMETER mm SAMPLE HEIGHT mm WATER CONTENT % TEST CONDITION RATE OF LOADING kN/s TEST DURATION mm.sec DATE OF TESTING LOAD FRAME USED LOAD DIRECTION WITH RESPECT TO LITHOLOGY YOUNG'S MODULUS E (AVERAGE) GPa POISSON'S RATIO V UNCONFINED COMPRESSIVE STRENGTH MPa	BH05 50710 26.12-26.35 79.70 181.09 0.1 As Received 0.8 7.14 24/01/2016 2000kN Perpendicular 9.18 0.24 66.3
---	---

Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 18.8MPa and 62.4MPa

Test Report Ref. STR: 443020 Page 11 of 12

BOREHOLE		BH04	SAMPLE FAILURE SHAPE
CORE RUN		48941	
DEPTH		29.38-29.54	
SAMPLE DIAMETER	mm	82.10	
SAMPLE THICKNESS	mm	38.53	
WATER CONTENT	%	0.1	/
DEGREE OF SATURATION	%	N/A	
STRESS RATE	kN/s	1.90	
TEST DURATION	secs	16	
DATE OF TESTING		21-Jan-16	
LOAD FRAME USED		Impact	
ORIENTATION OF LOADING	1770	Diam	
TENSILE STRENGTH	MPa	5.97	

BOREHOLE		SAMPLE FAILURE	SHAPE
CORE RUN			
DEPTH			
SAMPLE DIAMETER	mm		1
SAMPLE THICKNESS	mm		1
WATER CONTENT	%		1
DEGREE OF SATURATION	%	111/	- 1
STRESS RATE	kN/s		
TEST DURATION	secs		
DATE OF TESTING			
LOAD FRAME USED			
ORIENTATION OF LOADING			
TENSILE STRENGTH	MPa		

BOREHOLE		SAMPLE FAILURE SHAPE
CORE RUN		
DEPTH		
SAMPLE DIAMETER	mm	
SAMPLE THICKNESS	mm	
WATER CONTENT	%	
DEGREE OF SATURATION	%	
STRESS RATE	kN/s	
TEST DURATION	secs	
DATE OF TESTING	1,000	
LOAD FRAME USED		
ORIENTATION OF LOADING		
TENSILE STRENGTH	MPa	

Test Report Ref. STR: 443020 Page 12 of 12

BOREHOLE		BH05	SAMPLE FAILURE SHAPE
CORE RUN		50701	
DEPTH	4.2-	19.70-19.92	
SAMPLE DIAMETER	mm	82.24	
SAMPLE THICKNESS	mm	41.12	
WATER CONTENT	%	0.2	
DEGREE OF SATURATION	%	N/A	
STRESS RATE	kN/s	0.80	
TEST DURATION	secs	22	
DATE OF TESTING	2.65	21-Jan-16	
LOAD FRAME USED		Impact	
ORIENTATION OF LOADING	100	Diam	
TENSILE STRENGTH	MPa	3.39	

BOREHOLE CORE RUN		SAMPLE FAIL	URE SHAPE
DEPTH			
SAMPLE DIAMETER	mm		
SAMPLE THICKNESS	mm		
WATER CONTENT	%	11/	1
DEGREE OF SATURATION	%		1
STRESS RATE	kN/s		- 1
TEST DURATION	secs	1	
DATE OF TESTING			
LOAD FRAME USED			
ORIENTATION OF LOADING			
TENSILE STRENGTH	MPa		557

BOREHOLE		SAMPLE FAILURE SHAPE
CORE RUN		
DEPTH		
SAMPLE DIAMETER	mm	
SAMPLE THICKNESS	mm	
WATER CONTENT	%	1
DEGREE OF SATURATION	%	111
STRESS RATE	kN/s	
TEST DURATION	secs	
DATE OF TESTING	1,300	
LOAD FRAME USED		
ORIENTATION OF LOADING		
TENSILE STRENGTH	MPa	

Date: 29th March 2016 Priority Drilling Ltd. Test Report Ref. STR: 447866 Killimor

Ballinasloe Co Galway Ireland

8D23036i

Page 1 of 12

LABORATORY TEST REPORT

Unconfined compressive strength, elastic moduli & indirect tensile strength TEST REQUIREMENTS:

by Brazil.

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No: S56595 Client Ref. No: **Various** Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test.: 18/03/2016 Sampling Location: **Various**

Name of Source: **Lackagh Quarry**

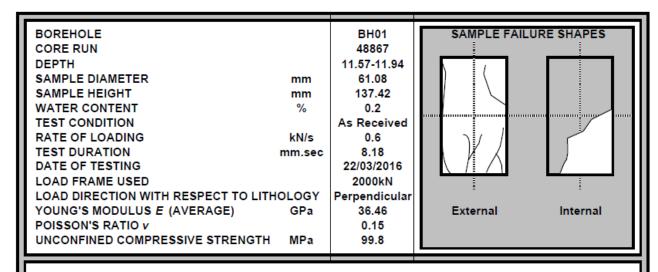
Method of Sampling: Unknown Sampled By: Client

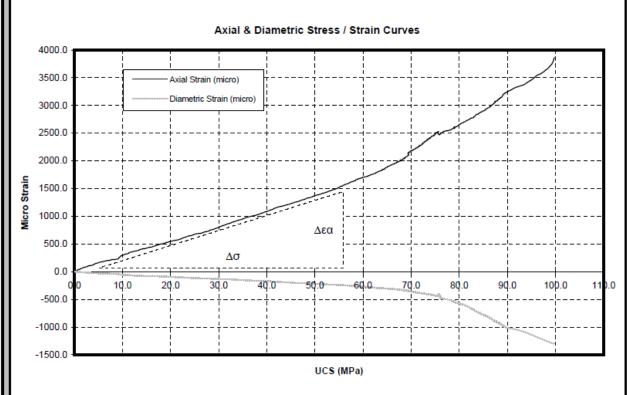
Aggregate Type and Nominal Size: **Rock Testing**

Target Specification: N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

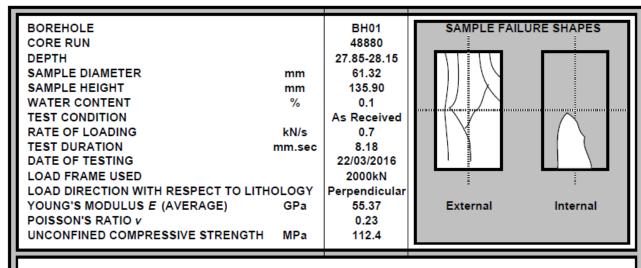
The work was carried out by our competent, sub contracted laboratory.

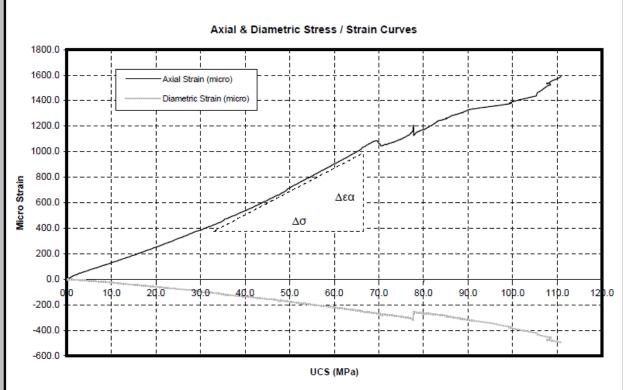

RESULTS


() E. R. Goulden Technical Manager Approved Signatories () E. N. Jones Soils Laboratory Manager

✓) N Dumbarton Assistant Laboratory Manager

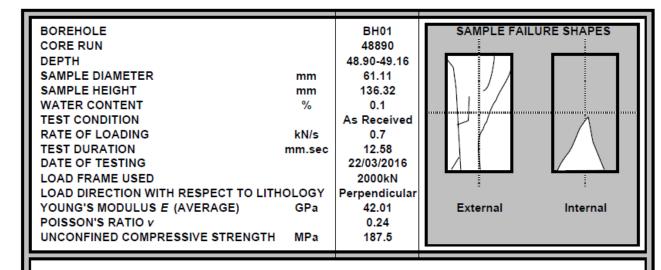
Test Report Ref. STR: 447866 Page 2 of 12

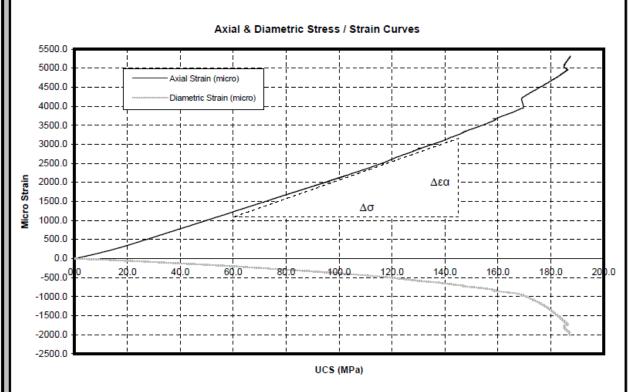



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 4.4MPa and 56MPa

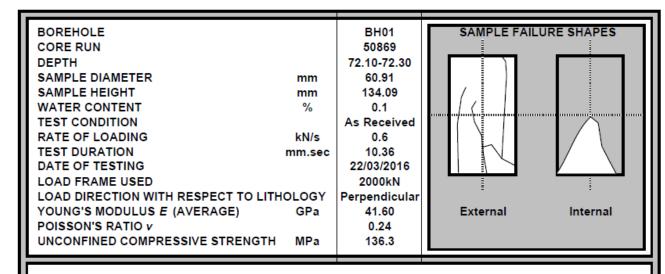
Test Report Ref. STR: 447866 Page 3 of 12

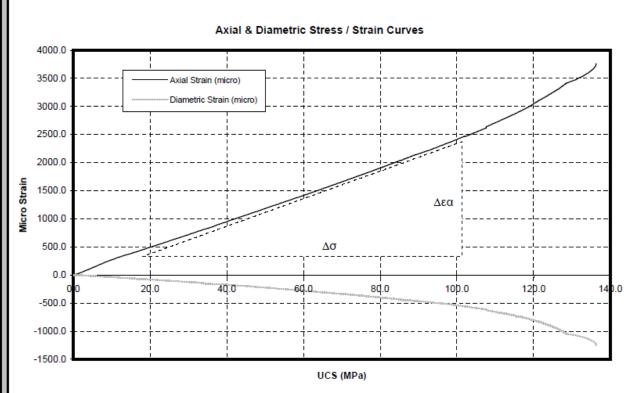



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 32MPa and 66.7MPa

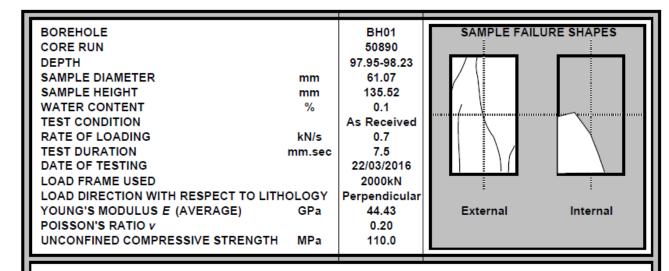
Test Report Ref. STR: 447866 Page 4 of 12

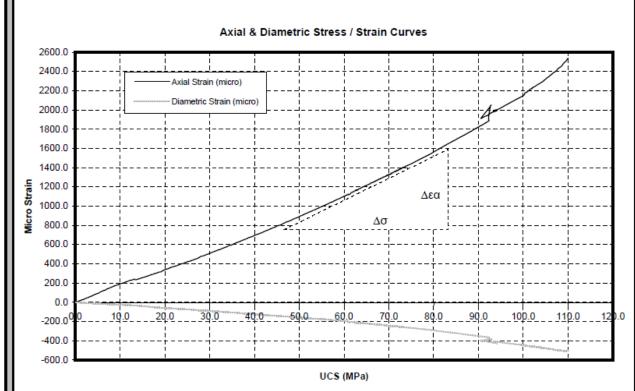



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 58.6MPa and 145.9MPa

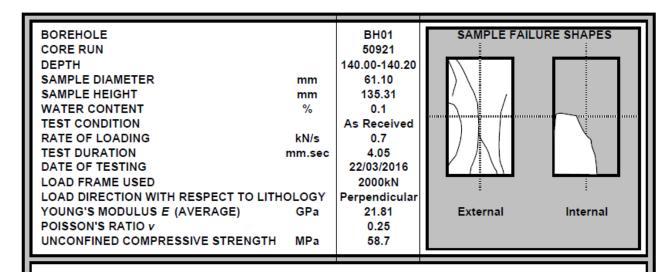
Test Report Ref. STR: 447866 Page 5 of 12

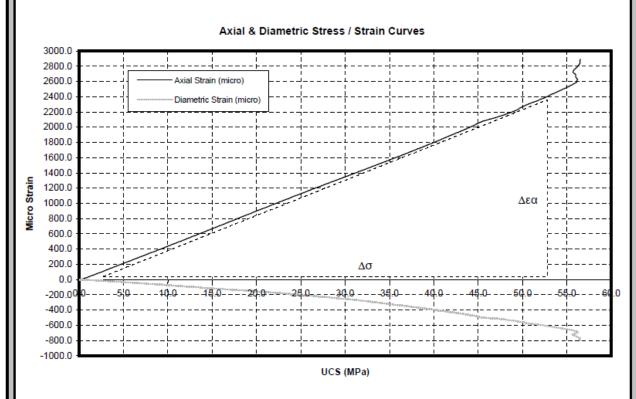



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 16.8MPa and 102.1MPa

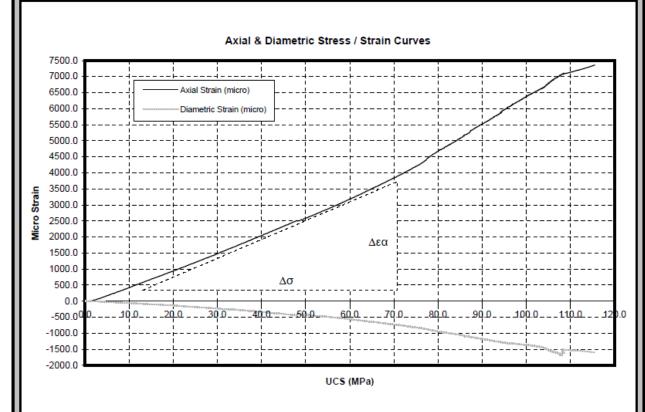
Test Report Ref. STR: 447866 Page 6 of 12




Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 45.6MPa and 83.4MPa

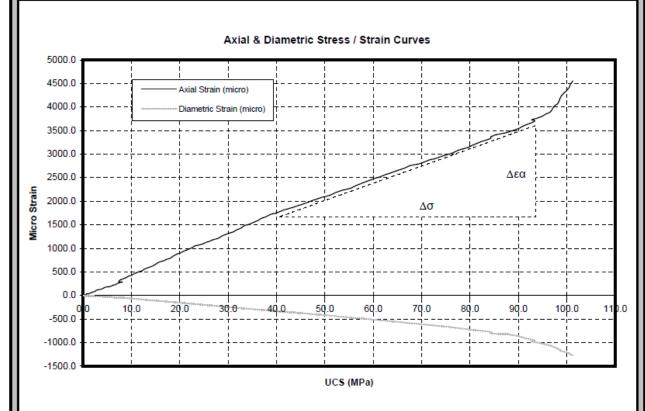
Test Report Ref. STR: 447866 Page 7 of 12


Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 2.3MPa and 53MPa

Test Report Ref. STR: 447866 Page 8 of 12

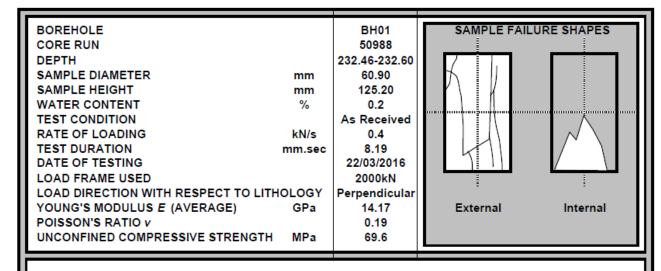
BOREHOLE CORE RUN		BH01 50950	SAMPLE FAI	LURE SHAPES
DEPTH		183.17-183.40	7	
SAMPLE DIAMETER	mm	61.20		
SAMPLE HEIGHT	mm	136.93	\ \ / \	
WATER CONTENT	%	0.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
TEST CONDITION		As Received		
RATE OF LOADING	kN/s	0.9	$V/I \setminus I$	
TEST DURATION	mm.sec	6.55		
DATE OF TESTING		22/03/2016	1	
LOAD FRAME USED		2000kN		
LOAD DIRECTION WITH RESPECT TO LIT		Perpendicular		
YOUNG'S MODULUS E (AVERAGE)	GPa	17.44	External	Internal
POISSON'S RATIO V		0.20		
UNCONFINED COMPRESSIVE STRENGTH	H MPa	118.6		

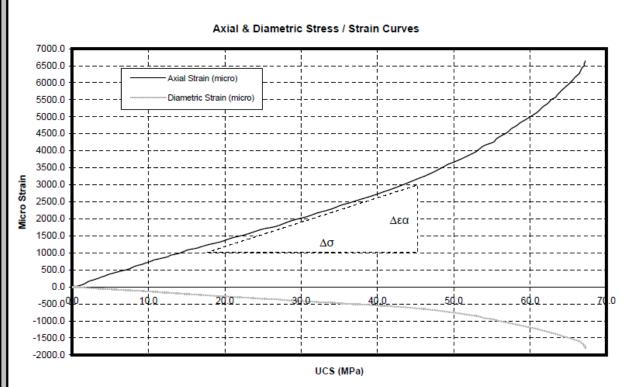

Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 12.4MPa and 70.7MPa

Test Report Ref. STR: 447866 Page 9 of 12

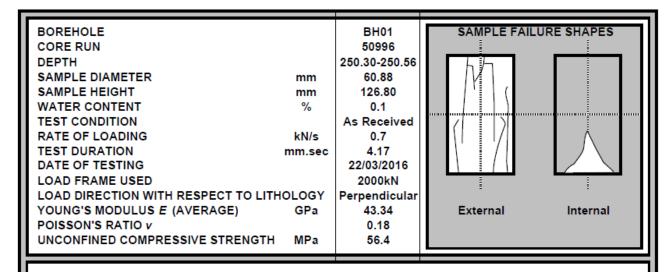
YOUNG'S MODULUS E (AVERAGE) GPa 26.89 External Internal 0.31 UNCONFINED COMPRESSIVE STRENGTH MPa 104.7
--

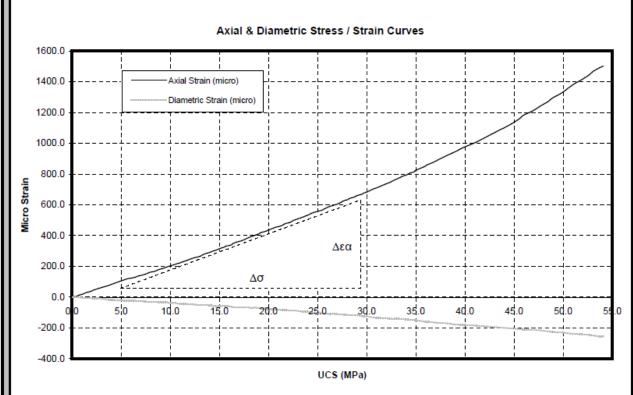



Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 39.7MPa and 93.4MPa

Test Report Ref. STR: 447866 Page 10 of 12




Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 16.8MPa and 45.4MPa

Test Report Ref. STR: 447866 Page 11 of 12

Test Notes:

Method of Young's modulus determination - Average Modulus of Linear Portion of Axial Stress-Strain Curve Method of Poisson's ratio determination - slope of axial curve / slope of lateral curve Young's modulus and poisson's ratio calculated between stress levels of 5MPa and 29MPa

Test Report Ref. STR: 447866 Page 12 of 12

BOREHOLE		BH01	SAMPLE F	AILURE SHAPE
CORE RUN		50858		1
DEPTH		64.20-64.50		
SAMPLE DIAMETER	mm	60.97		
SAMPLE THICKNESS	mm	30.76		
WATER CONTENT	%	0.3	/	1
DEGREE OF SATURATION	%	N/A		1 1
STRESS RATE	kN/s	1.10		1 1
TEST DURATION	secs	20	1	1
DATE OF TESTING		21-Mar-16		
LOAD FRAME USED		2000kN		
ORIENTATION OF LOADING		Diam		\
TENSILE STRENGTH	MPa	7.80		

BOREHOLE		BH01	SAMPLE FAILURE SHAPE
CORE RUN		50892	
DEPTH		102.90-103.20	
SAMPLE DIAMETER	mm	61.19	
SAMPLE THICKNESS	mm	30.52	
WATER CONTENT	%	0.1	/ / /
DEGREE OF SATURATION	%	N/A	
STRESS RATE	kN/s	1.50	
TEST DURATION	secs	24	
DATE OF TESTING	100	21-Mar-16	
LOAD FRAME USED		2000kN	
ORIENTATION OF LOADING	- (7.3)	Diam	
TENSILE STRENGTH	MPa	12.60	1

BOREHOLE		BH01	SAMPLE FAILURE	SHAPE
CORE RUN		50948	1	
DEPTH		180.24-180.50	/	
SAMPLE DIAMETER	mm	61.51		1
SAMPLE THICKNESS	mm	30.46		
WATER CONTENT	%	3.9		1
DEGREE OF SATURATION	%	N/A		1
STRESS RATE	kN/s	1.7	1	- 1
TEST DURATION	secs	26		/
DATE OF TESTING	10.31	21-Mar-16		
LOAD FRAME USED		2000kN		
ORIENTATION OF LOADING		Diam		
TENSILE STRENGTH	MPa	14.60		

Frost Heave

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 2

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Frost Heave of Unbound Aggregate in accordance with **BS 812**:

Part 124: 2009 - Annex B (Use of Comparator Specimens)

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No:

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

No

S56595

Bulk Samples

Unknown

18/01/2016

24/02/2016

Unknown

Name of Source: Lackagh Quarry Method of Sampling: Unknown

Sampled By: Client
Material Description: Aggregate

Target Specification SHW Series 800: clause 801.8

RESULTS:

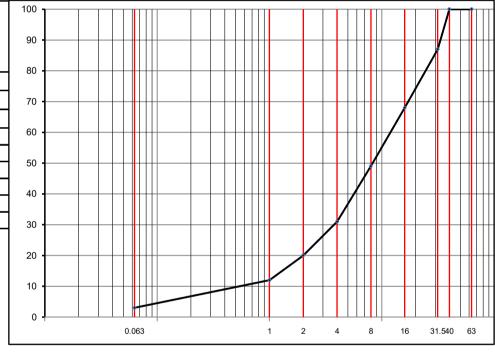
Were any unrepresentative lumps present? No

Frost Heave Test Result:

Maximum Heave Observed in 96 hours (mm)			
Comparator Specimen 1	11.5	(nearest 0.5mm)	
Comparator Specimen 2	12.0	(nearest 0.5mm)	
Comparator Specimen 3	12.0	(nearest 0.5mm)	
Mean	11.8	(nearest 0.1mm)	
To all Our arises and	0.5	(
Test Specimen 1	3.5	(nearest 0.5mm)	
Test Specimen 2	2.0	(nearest 0.5mm)	
Test Specimen 3	4.5	(nearest 0.5mm)	
Mean Frost Heave	3.3	(nearest 0.1mm)	

In accordance with SHW Series 800: clause 801.8 the sample is classified as being Non Frost Susceptible (mean frost heave ≤ 15mm)

Test Report Ref: STR 448032 Page 2 of 2


RESULTS CONTINUED:

Laboratory Dry Density & Water Content Test Result

Maximum Dry Density	2.18 Mg/m3
Optimum Water Content	6.5 %
Actual Dry Density	2.18 Mg/m3
Actual Water Content	6.5 %

Particle Size Distribution Test Result

BS Test Sieve Nominal Apperature	As Received Test Portion % Passing	Stable Test Portion % Passing
63.0 mm	100	100
40.0 mm	100	100
31.5 mm	87	87
16.0 mm	68	68
8.0 mm	49	49
4.0 mm	31	31
2.0 mm	20	20
1.0 mm	12	12
0.063 mm	3	3

Comments

None

Certificate
Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Ellewiden

Eric Goulden Technical Manager

Los Angeles Coefficient

Priority Construction Ltd Date: 29 February 2016 162 Clontarf Road

Test Report Ref: STR 448029

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Fragmentation of Aggregate - Los Angeles

Test Method in accordance with BS EN 1097-2: 2010

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref. No: **Bulk Sample** Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 21/02/2016 Sampling Location: Unknown

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client Material Description: **Aggregate**

Target Specification: N/A

RESULTS:

Size fraction from which the test portion was obtained: 14mm to 12.5mm

12.5mm to 10.0mm

Los Angeles Coefficient (LA) = 28

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elizabeth

Eric Goulden

Magnesium Sulphate Soundness

Priority Construction Ltd Date: 29 February 2016 162 Clontarf Road

Test Report Ref: STR 448030

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Magnesium Sulfate Value of aggregate sample within the **TEST REQUIREMENTS:**

size range 10mm to 14mm in accordance with BS EN 1367-2: 2009

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref. No: **Bulk Sample** Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 26/02/2016 Sampling Location: Unknown

Name of Source: **Lackagh Quarry**

Method of Sampling: Unknown Sampled By: Client Material Description: **Aggregate**

Target Specification: N/A

RESULTS:

Magnesium Sulfate Value Portion 1 (MS_1) = 0.6 Magnesium Sulfate Value Portion 2 (MS_2) = 0.3

Mean Magnesium Sulfate Value (MS) = 1

Comments

Proportion by mass of laboratory sample used for the test portion = 5% (nearest 5%)

Certificate

Prepared by:-

Mathew Saver

Assistant Laboratory Manager

Approved by: - Elpulden

Eric Goulden

Moisture Content

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 48861
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:6.70 Depth Base:6.80

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: **BH01 - 48868**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:13.26 Depth Base:13.35

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.6

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 48881
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:32.65 Depth Base:32.72

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.4

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 48897
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:57.30 Depth Base:57.40

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.1

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: **BH01 - 48898**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:61.65 Depth Base:61.75

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50865

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:67.07 Depth Base:67.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.1

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50868
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:70.10 Depth Base:70.20

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50870
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:73.03 Depth Base:73.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.6

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50871

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:76.00 Depth Base:76.09

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50875

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:80.04 Depth Base:80.12

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50876

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:81.70 Depth Base:81.78

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.6

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50877

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: **Depth Top:87.50 Depth Base:87.57**

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.8

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50878

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:39.70 Depth Base:39.80

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50882

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:91.63 Depth Base:91.71

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.8

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50886

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:93.00 Depth Base:93.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.5

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50889

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:94.96 Depth Base:95.05

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50891
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:101.36 Depth Base:101.45

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.6

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50896

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:108.62 Depth Base:108.70

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: **BH01 - 50900**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:113.12 Depth Base:113.19

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.5

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50904
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:118.82 Depth Base:118.88

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.9

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: **BH01 - 50900**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:113.12 Depth Base:113.19

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.5

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50904
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:118.82 Depth Base:118.88

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.9

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50905
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:123.44 Depth Base:123.55

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 2.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50906

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:125.90 Depth Base:126.00

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50907
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:126.80 Depth Base:126.90

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 2.5

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50911
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:131.12 Depth Base:131.17

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 2.6

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50912

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:131.60 Depth Base:131.70

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50913

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:132.65 Depth Base:132.62

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.8

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50917
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:134.35 Depth Base:134.44

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.1

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50922

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:142.81 Depth Base:142.91

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50931
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:154.60 Depth Base:154.68

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.4

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50932

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:155.20 Depth Base:155.28

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.7

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50936
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:163.49 Depth Base:163.56

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 2.5

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Date of Start of Test:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50940
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Sampling Location: Depth Top:172.96 Depth Base:173.07

17/02/2016

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Date of Start of Test:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50940
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Sampling Location: Depth Top:172.96 Depth Base:173.07

17/02/2016

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50947
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:176.00 Depth Base:176.10

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.2

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50954
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:196.19 Depth Base:186.25

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.8

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50965
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:209.65 Depth Base:209.72

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.7

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: **BH01 - 50969**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:211.10 Depth Base:211.20

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.4

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50975

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:218.20 Depth Base:218.28

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.5

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50976

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:222.52 Depth Base:222.62

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown

Client

Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.0

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50984

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:230.13 Depth Base:230.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 2.0

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56595**

Client Ref. No: BH01 - 50989
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:235.04 Depth Base:235.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown
Sampled By: Client
Material Description: Rock Core

Target Specification: N/A

RESULTS:

Water Content (%) = 1.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48901
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 3.5 Depth Base: 3.55

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.2

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48902
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 5.4 Depth Base: 5.48

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.6

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48904

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 9.3 Depth Base: 9.36

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.3

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48906
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 11.77 Depth Base: 11.83

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.2

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 2

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Uniaxial Compressive Strength in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No:

Client Ref.:

Various

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

No

S56158

Various

Unknown

08/12/2015

Various

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See attached

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Test Report Ref: STR 443020 - Page 2 of 2

ВН	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH04 48908	82	2.6:1	76	N	Strong	0.1
BH04 48912	82.3	1.9:1	86	N	Strong	0.3
BH04 48921	82.3	1.5:1	55	N	Strong	0.1
BH04 48927	82.1	1.6:1	53	N	Strong	0.2
BH04 48931	82.2	2.6:1	111	N	Very Strong	0.1
BH04 48933	82	2.1:1	91	N	Strong	0.2
BH04 48950	82	2.5:1	76	N	Strong	0.2
BH04 48957	82	2:1	78	N	Strong	0.3
BH04 48963	82.2	2.4:1	92	N	Strong	0.1
BH05 48982	82	1.8:1	91	N	Strong	0.2
BH05 48986	81.5	2.6:1	86	N	Strong	0.4
BH05 48991	81.4	2.5:1	94	N	Strong	0.1
BH05 48994	82	1.9:1	72	N	Strong	0.2
BH05 48998	82.2	2.6:1	77	N	Strong	0.2
BH05 50711	78.5	1.8:1	79	N	Strong	0.2
BH05 50729	79	2.5:1	116	N	Very Strong	0.3
BH05 50731	81.4	2.6:1	51	N	Strong	0.1
BH05 50733	81.6	2.1:1	54	N	Strong	0.2
BH05 50737	82	1.5:1	131	N	Very Strong	0.2

Comments

- 1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.
- 2) Stress Rate: 0.7Mpa/s.

3)	EN ISO 14689-1 : 2003 Rock Strength Terms				
	Compressive Strength mpa	Term			
	<1.0	Extremely Weak			
	1 to 5	Very Weak			
	5 to 25	Weak			
	25 to 50	Meduim Strong			
	50 to 100	Strong			
	100 to 250	Very Strong			
	> 250	Extremely Strong			

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48922

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 20.8 Depth Base: 20.85

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.4

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48924

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 21.8 Depth Base: 21.9

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 1.0

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH04 - 48938**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 28.27 Depth Base: 38.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH04 - 48954**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 21/12/2015

Sampling Location: Depth Top: 31.66 Depth Base: 31.7

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Client

Material Description:

Core

Target Specification:

N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Assistant Laboratory Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56158

Client Ref. : BH04 - 48956

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
08/12/2015
24/12/2015

Sampling Location: Depth Top: 31.84 Depth Base: 31.93

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Core

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = $0.04 SO_4$

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with

BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH04 - 48959
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 22/12/2015

Sampling Location: Depth Top: 32.26 Depth Base: 32.35

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Core

Target Specification:

N/A

RESULTS:

pH Value = 9.3

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH04 - 48965**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 33.12 Depth Base: 33.16

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH04 - 48969**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 34.56 Depth Base: 34.59

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH04 - 48970
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 34.96 Depth Base: 35

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.2

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH05 - 48971
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 0.65 Depth Base: 0.73

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.3

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH05 - 48972
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 0.98 Depth Base: 1.04

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH05 - 48973
Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 1.41 Depth Base: 1.5

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

<u>TEST REQUIREMENTS</u> To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH05 - 48980**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
08/12/2015
15/12/2015

Sampling Location: Depth Top: 8.9 Depth Base: 8.96

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH05 - 48988**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 12.92 Depth Base: 13.07

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.3

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH05 - 50712

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 28.75 Depth Base: 28.85

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.1

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56158

Client Ref. : BH05 - 50716

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

08/12/2015

Date of Start of Test:

24/12/2015

Sampling Location: Depth Top: 29.18 Depth Base: 29.3

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Core

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = $<0.01 SO_4$

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH05 - 50717

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 22/12/2015

Sampling Location: Depth Top: 29.3 Depth Base: 29.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Core

Target Specification:

N/A

RESULTS:

pH Value = 9.2

Mathew Sayer

95% Confidence limit* 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Therefore

Eric Goulden

Assistant Laboratory Manager Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH05 - 50718

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 30.3 Depth Base: 30.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.4

Comments

None

Certificate

Prepared by:- //

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH05 - 50721

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 30.88 Depth Base: 30.92

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.3

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS To determine the Water Content of aggregates by – drying in a ventilated oven according to **BS EN 1097-5: 2008**

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH05 - 50726

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 15/12/2015

Sampling Location: Depth Top: 32.54 Depth Base: 32.6

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

Water Content (%) = 0.2

Comments

None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Ellpulden

Oxidisable Sulphur

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. : BH01 - 48892

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:55.30 Depth Base:55.40

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = $<0.01 SO_4$

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Test Report Ref: STR 447895

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Oxidisable sulphides (OS) content of an Sample **TEST REQUIREMENTS:**

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref.: BH01 - 50887

Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:94.90 Depth Base:94.96

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: **Rock Testing**

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = <0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Test Report Ref: STR 447938

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Oxidisable sulphides (OS) content of an Sample **TEST REQUIREMENTS:**

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref.: BH01 - 50930

Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:153.20 Depth Base:153.30

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: **Rock Testing**

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = <0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Test Report Ref: STR 447971

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Oxidisable sulphides (OS) content of an Sample **TEST REQUIREMENTS:**

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref.: BH01 - 50961

Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 17/02/2016

Sampling Location: **Depth Top:201.47 Depth Base:201.55**

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: **Rock Testing**

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = <0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Test Report Ref: STR 448010

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Oxidisable sulphides (OS) content of an Sample **TEST REQUIREMENTS:**

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref.: BH01 - 51000

Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:253.30 Depth Base:253.38

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: **Rock Testing**

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = <0.01 SO₄

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56158

Client Ref. : BH04 - 48956

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
08/12/2015
24/12/2015

Sampling Location: Depth Top: 31.84 Depth Base: 31.93

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Core

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = $0.04 SO_4$

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Oxidisable sulphides (OS) content of an Sample

by calculation of TRL Report 447 Test No. 2 and Test No. 4

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56158

Client Ref. : **BH05 - 50716**

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

08/12/2015

Date of Start of Test:

24/12/2015

Sampling Location: Depth Top: 29.18 Depth Base: 29.3

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Core

Target Specification: <0.5 % SO₄ - If deposited within 500mm of Cementitious

Materials

<0.06 % SO₄ - If deposited within 500mm of Metallic

Structural Elements

RESULTS:

Oxidisable Sulphides (OS) (%) = $<0.01 SO_4$

Comments

The work was carried out by our accredited, competent, sub contracted laboratory.

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

pH Value

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with

BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: BH01 - 48893

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 09/02/2016

Sampling Location: Depth Top:55.84 Depth Base:55.92

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

pH Value = 9.1

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 8.86% - 9.34%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: BH01 - 50888

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 09/02/2016

Sampling Location: Depth Top:94.96 Depth Base:95.05

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

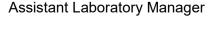
RESULTS:

pH Value = 9.2

Mathew Sayer

95% Confidence limit* 8.96% - 9.44%

Comments


*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: BH01 - 50920
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 09/02/2016

Sampling Location: Depth Top:138.60 Depth Base:138.72

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

pH Value = 9.2

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with

BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: BH01 - 50949
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 09/02/2016

Sampling Location: Depth Top:182.12 Depth Base:182.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

pH Value = 9.3

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with

BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: BH01 - 50974

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 18/01/2016

Date of Start of Test: 09/02/2016

Sampling Location: Depth Top:213.80 Depth Base:213.90

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

pH Value = 9.1

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 8.86% - 9.34%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with

BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH04 - 48959
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 22/12/2015

Sampling Location: Depth Top: 32.26 Depth Base: 32.35

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Core

Target Specification:

N/A

RESULTS:

pH Value = 9.3

Mathew Sayer

Assistant Laboratory Manager

95% Confidence limit* 9.06% - 9.54%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizabeth

Eric Goulden

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the pH Value of Soils in accordance with BS 1377:Part 3:1990 - Clause 9, Electrometric Method.

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: BH05 - 50717

Date and Time of Sampling: Unknown

Date of Receipt at Lab: 08/12/2015

Date of Start of Test: 22/12/2015

Sampling Location: Depth Top: 29.3 Depth Base: 29.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Core

Target Specification:

N/A

RESULTS:

pH Value = 9.2

Mathew Sayer

95% Confidence limit* 8.96% - 9.44%

Comments

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Therefore

Eric Goulden

Assistant Laboratory Manager Technical Manager

Point Load Testing

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443019

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48907

Unknown

08/12/2015

Sampling Location: Depth Top: 12.62 Depth Base: 12.75

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443019 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d l								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48907											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	ì				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	2 2 101 41		(4)									
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	13		13 (50)	Strength (MPa)
*	*	*	*	*	*	*	*** 5					Strongth (Wir u)
Axial, Block or Lu	ımp Tests											
,												
1	Core	d		80	112	20.0	8960	11408	1.75	1.41	2.47	59.2
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10											Mean	59.2

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443021

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48909

Unknown

08/12/2015

Sampling Location: Depth Top: 13.1 Depth Base: 13.25

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443021 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48909											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 d1		(u)	10313					"	1 CSt pa		ione
											. /==>	
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete	"				-						
Axiai, Block of Lt	inp resis											
1	Core	d		80	130	20.0	10400	13242	1.51	1.46	2.20	52.7
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	52.7

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443023

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48911

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 14.63 Depth Base: 14.74

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443023 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48911											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an	umotra	(u)							1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00 k 0: 20												
1	Core	d		80	105	15.8	8400	10695	1.48	1.39	2.05	49.2
2												
3												
4												
5												
6												
7												
8												
9												
10												10.0
											Mean	49.2

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443025

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

No

\$56158

BH04 - 48913

Unknown

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

Unknown
08/12/2015
8/12/2015

Sampling Location: Depth Top: 14.97 Depth Base: 15.13

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443025 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48913											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an		(4)						,,	1001 pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00 k 0: 20												
1	Core	d		80	125	22.1	10000	12732	1.74	1.44	2.50	60.1
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10											Mean	60.1

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443027

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48915

Unknown
08/12/2015

8/12/2015

Sampling Location: Depth Top: 17.74 Depth Base: 17.86

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443027 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48915	5										
Key : -												
-												
D	Always dista	ince be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perc	end	icular to	oloadin	na directi	ion		Р		ilure in KN	
	ie core diam								ls	Uncorre	ected strei	ngth index
	W =(W1 +								Is (50)		ad streng	•
	· ·								· '			
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	bric
Sample	Sample	Test		D	W	Р	Α	D*D	Is	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				11 (00)	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
•												
1	Core	d		80	135	23.5	10800	13751	1.71	1.47	2.51	60.2
2												
3												
4												
5												
6												
7												
8												
9												
10											ļ	
											Mean	60.2

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443029

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48917

Unknown

08/12/2015

Sampling Location: Depth Top: 18.12 Depth Base: 18.2

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443029 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48917											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot di		(u)						"	1 cot pa		
0	0	T4		D	W	Р	Α	D*D	ls	F	I- (FO)	A
Sample	Sample	Test				KN	=W*D	טט	IS	Г	Is (50)	Approx. Compressive Strength (MPa)
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (WFa)
Axial, Block or Lu	ımn Tests											
Axidi, Block of Le	The resis											
1	Core	d		80	85	15.4	6800	8658	1.78	1.32	2.35	56.5
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	56.5

Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443030

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48918

Unknown
08/12/2015

8/12/2015

Sampling Location: Depth Top: 19.2 Depth Base: 19.32

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443030 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48918											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid			•		•			Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + \	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	2 2 10. 4.		(4)	10010								
0	0	T4		D	W	1	Δ.	D*D	1-		I- (FO)	Anna Canana anima
Sample	Sample	Test				P KN	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MPa)
Axial, Block or Lu	mn Toete											
Axiai, block of Ed	IIIP Tests											
1	Core	d		80	120	13.0	9600	12223	1.06	1.43	1.52	36.5
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	36.5

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443032

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab:

No

S56158

BH04 - 48920

Unknown

08/12/2015

Date of Receipt at Lab.: 08/12/2015
Date of Start of Test.: 8/12/2015

Sampling Location: Depth Top: 20.12 Depth Base: 20.22

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443032 - Page 2 of 2

Client	Priority Cons	tructio	n Lto	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48920											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		(u)	10313					"	1 CSt pa		ione
		- .			14/			D+D			1 (50)	
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	* *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Tests											
Axidi, Block of Le	linp rests											
1	Core	d		80	98	22.5	7840	9982	2.25	1.37	3.08	73.9
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												72.0
											Mean	73.9

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443035

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH04 - 48923

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 21.2 Depth Base: 21.3

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443035 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	i								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48923											
Key : -												
•												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perc	end	icular to	oloadir	na directi	ion		Р	Load fa	ilure in KN	
	ie core diam					· 9			ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)		ad streng	<u> </u>
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	ictor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia	_							//		rallel to fa	
0.0	- D D 101 d1		(u)	10313					"	1 CSt pa		
0	0	T4		D	W	Р	Α	D*D	1-	F	I- (FO)	A ======
Sample	Sample	Test					=W*D	טייט	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, block of Lt	inp rests											
1	Core	d		80	87	19.0	6960	8862	2.14	1.33	2.85	68.4
2	33.3					10.0	0000	333 <u>Z</u>		1.00	2.00	55.1
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	68.4

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443037

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48925

Unknown

08/12/2015

Sampling Location: Depth Top: 22.2 Depth Base: 22.31

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443037 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48925	ı										
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i					< D < W			#			ar to fabric
D*D	= D*D for dia				0.011				//		rallel to fa	
	- D D loi di	amena	li (u)	lesis					- //	Test pa	li allei to ia	abiic
		- .			14/	-		D+D			1 (50)	
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	* *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Tests											
rixiai, Biook of Le												
1	Core	d		80	100	27.9	8000	10186	2.74	1.37	3.76	90.2
2												
3												
4												
5												
6												
7												
8												
9 10												
10												00.2
											Mean	90.2

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443038

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48926

Unknown

08/12/2015

Sampling Location: Depth Top: 22.6 Depth Base: 22.78

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443038 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48926											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	ř				ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ction	nal area	3				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an		(u)	10010					- "	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
1	Core	d		80	142	24.4	11360	14464	1.69	1.48	2.50	60.1
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10											Mean	60.1

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443040

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Date of Start of Test.:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

No
S56158

BH04 - 48928

Unknown
08/12/2015

Sampling Location: Depth Top: 23.1 Depth Base: 23.2

8/12/2015

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443040 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48928											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		ii (u)	10313					"	1 CSt pa		ione
				_			_					
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Tooto			,		•						
Axiai, block of Lt	imp resis											
1	Core	d		80	100	20.0	8000	10186	1.96	1.37	2.69	64.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	64.6

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443042

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Date of Start of Test.:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

No
S56158

BH04 - 48930

Unknown
08/12/2015

Sampling Location: Depth Top: 23.7 Depth Base: 23.8

8/12/2015

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443042 - Page 2 of 2

Client	Priority Cons	n Lto	i												
Sample Number															
Date Recived	8.12.15														
Sample Ref	BH04 48930														
Key : -															
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests			
W	Smallest wid	th perp	end	icular to	loadir	ng directi	ion		Р	Load fa	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
А	W*D minimu								F		Size correction factor				
	For axial or i	ck test	0.3W <	< D < W			#	Test perpendicular to fabric							
D*D	For axial or irregular block test 0.3W < D < = D*D for diametral (d) tests								//	Test parallel to fabric					
									,,	1001 pa		5110			
Sample	Sample	Test		D	W	P	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D	טט	13	<u>'</u>	15 (50)	Strength (MPa)			
*	*	*	*	*	*	*	W D					ouengui (ivii u)			
Axial, Block or Lu	ımp Tests														
,															
1	Core	d		80	95	23.1	7600	9677	2.39	1.36	3.24	77.7			
2															
3															
4															
5															
6															
7															
<u>8</u> 9															
10															
10												77.7			
											Mean	77.7			

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443044

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH04 - 48932

Unknown

08/12/2015

Sampling Location: Depth Top: 24.17 Depth Base: 24.28

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443044 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l											
Sample Number	S56158														
Date Recived	8.12.15														
Sample Ref	BH04 48932														
Key : -															
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	V			
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index			
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
А	W*D minimu	m x-se	ctior	nal area	1				F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric					
	B B for diameter (a) tools								,,	1001 pa					
01-	0	T4		D	W	1	Δ.	D*D	1-	_	I- (FO)	A C			
Sample	Sample	Test				P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive			
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MPa)			
Axial, Block or Lu	ımn Tests														
Axiai, Block of Ea	linp rests														
1	Core	d		80	100	22.9	8000	10186	2.25	1.37	3.08	74.0			
2															
3															
4															
5															
6															
7															
8															
9															
10											1	74.0			
											Mean	/ 4.0			

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443047

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48934

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 25.08 Depth Base: 25.19

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443047 - Page 2 of 2

Client	Priority Cons	n Ltd	1										
Sample Number													
Date Recived	8.12.15												
Sample Ref	BH04 48934												
Key:-													
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests	
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N	
	ie core diameter for axial tests.								ls	Uncorre	ected strei	ngth index	
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index	
А	W*D minimu	ım x-se	ection	nal area	1				F	Size co	rrection fa	actor	
	For axial or i	ck test	0.3W <	< D < W			#	Test perpendicular to fabric					
D*D	For axial or irregular block test 0.3W < D < = D*D for diametral (d) tests								//	Test parallel to fabric			
	B B for diametral (d) tests								- "	rest parametro tablic			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)	
*	type *	type *	*	*	*	*	- VV D					Strength (Wir a)	
Axial, Block or Lu	ımp Tests												
John J. Con C. L.													
1	Core	d		80	111	26.0	8880	11306	2.30	1.40	3.23	77.5	
2													
3													
4													
5													
6													
7													
8													
9		-											
10													
											Mean	77.5	

Ireland

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443049

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48937

Unknown

08/12/2015

Sampling Location: Depth Top: 27.91 Depth Base: 28

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443049 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH04 48937													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/pi	for axial	(a) and irregular block (b) tests		
W	Smallest wid			•		•			Р		ilure in Kl	• • • • • • • • • • • • • • • • • • • •		
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 + V	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimu								F	Size correction factor				
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test perpendicular to fabric				
D*D	= D*D for dia								//	abric				
0	0	T4		D	W	1	Δ.	D*D	1-	_	I- (FO)	A		
Sample	Sample	Test				P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive		
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MPa)		
Axial, Block or Lu	mn Toete													
Axiai, Diock of Lu	IIIP Tests													
1	Core	d		80	86	24.6	6880	8760	2.81	1.33	3.72	89.4		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	89.4		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443051

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48939

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 28.4 Depth Base: 28.44

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443051 - Page 2 of 2

Client	Priority Cons	n Ltc	1										
Sample Number													
Date Recived	8.12.15												
Sample Ref	BH04 48939												
Key:-													
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N	
	ie core diameter for axial tests.								Is	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index	
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor	
	For axial or i	ck test	0.3W <	< D < W			#	Test perpendicular to fabric					
D*D	For axial or irregular block test 0.3W < D < V								//	Test parallel to fabric			
	B B for diametral (d) toda								"	Test parametric fabric			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)	
*	type *	type *	*	*	*	*	- VV D					Strength (Wir a)	
Axial, Block or Lu	ımp Tests												
, p													
1	Core	d		80	104	21.8	8320	10593	2.06	1.38	2.85	68.3	
2													
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	68.3	

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443051

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48939

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 28.4 Depth Base: 28.44

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443051 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48939											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an	umotra	(u)						"	1 COL PU		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, p												
1	Core	d		80	104	21.8	8320	10593	2.06	1.38	2.85	68.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	68.3

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443054

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH04 - 48943

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 29.86 Depth Base: 29.94

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443054 - Page 2 of 2

	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Always distar Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Always distar Smallest widt ie core diam W =(W1 + V W*D minimul	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
Smallest widt ie core diam W =(W1 + V W*D minimu	th perpo eter for W2)/2 fo m x-sec	endio axia or irr	cular to	loadin				D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
ie core diam W =(W1 + V W*D minimu	eter for N2)/2 fo m x-sec	axia	al tests		g directi	on					(a) and mogular blook (b) losts
W =(W1 + V W*D minimui	W2)/2 fo m x-sec	or irr				011		Р	Load fa	ilure in KN	J
W*D minimu	m x-sec		egular					Is	Uncorre	cted strei	ngth index
				blocks				Is (50)	Point lo	ad streng	th index
For axial or ir		ction	al area	1				F	Size co	rrection fa	ector
								#	Test pe	rpendicula	ar to fabric
_ D D 101 G16	Inctial	(4)	10313					- //	TCSt pa	ranci to ia	biic
				141		_	D+D		-	1 (50)	
							ט^ט	IS	F	IS (50)	Approx. Compressive
type *	type *	*	*	*	* *	=VV D					Strength (MPa)
nn Tests											
iip rests											
Lump	b		80	40	14.0	3200	4074	3.44	1.12	3.84	92.0
										Mean	92.0
n	Sample type * p Tests	Sample Test type type * **PTESTS	Sample Test type type * * * *	Sample Test D type type mm * * * * * ** ** ** ** ** ** *	Sample Test D W type type mm mm * * * * * * ** ** ** ** **	Sample Test D W P type type mm mm KN ** * * * * * * * * ** ** * * * * ** **	Sample Test D W P A type type mm mm KN =W*D * * * * * * * * * * ** ** ** **	or axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P A D*D type type mm mm KN = W*D * * * * * * * * * * * * * * * *	Sample Test D W P A D*D Is	Test pe	Test perpendicular Test pe

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443062

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48949

Unknown

08/12/2015

Sampling Location: Depth Top: 30.93 Depth Base: 30.03

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443062 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48949											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	V
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an	umotra	(u)						- ''	1 cot pa		
0	0	T		D	W	Р	•	D+D		F	1. (50)	1
Sample	Sample	Test				KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive Strength (MPa)
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MFa)
Axial, Block or Lu	ımn Tests											
Axidi, Block of Le	linp rests											
1	Core	d		80	85	20.9	6800	8658	2.41	1.32	3.19	76.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	76.6

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443064

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48951

Unknown

08/12/2015

Sampling Location: Depth Top: 31.3 Depth Base: 31.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443064 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48951											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot di		(u)						- "	1 COL PO		10110
0	0	T4		D	W	Р	Α	D*D	ls	F	I- (FO)	A
Sample	Sample	Test				KN	=W*D	טט	IS	Г	Is (50)	Approx. Compressive Strength (MPa)
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (WFa)
Axial, Block or Lu	ımn Tests											
Axidi, Block of Le	ling rests											
1	Core	d		80	112	22.9	8960	11408	2.01	1.41	2.82	67.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	67.8

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443068

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48955

Unknown
08/12/2015

Sampling Location: Depth Top: 31.76 Depth Base: 31.84

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443068 - Page 2 of 2

Client	Priority Cons	structio	n Ltd									
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48955											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	endi	cular to	o loadin	ng direct	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for in	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	<i>B B</i> 101 u1		(4)	10010					,,	1001 pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Annray Compressive
no	type	type		mm	mm	KN	=W*D	טט	IS	Г	18 (50)	Approx. Compressive Strength (MPa)
*	type *	type *	*	*	*	*	-VV D					Sueligui (MFa)
Axial, Block or Lu	ımn Tests											
rixiai, Biook of Et												
1	Core	d		80	90	17.0	7200	9167	1.85	1.34	2.48	59.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	59.6

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443071

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH04 - 48958

Unknown
08/12/2015

Sampling Location: Depth Top: 32.15 Depth Base: 32.26

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443071 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48958											
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		li (u)	10313					"	TCSt pa		
				_			_			_		
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımp Tooto			,		•						
Axiai, block of Lu	inp resis											
1	Lump	b		59	125	16.1	7375	9390	1.71	1.35	2.31	55.4
2	•											
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	55.4

Ireland VAT No: 9D53971I Date: 21st December 2015 Test Report Ref:. STR: 443075

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

PH04

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH04 - 48962

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 32.5 Depth Base: 32.57

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443075 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48962											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 d1		ii (u)	10313					"	TCSt pa		
											. (==)	
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete	-	-			-						
Axiai, block of Lt	ilip resis											
1	Lump	b		68	75	17.2	5100	6494	2.65	1.24	3.28	78.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	78.8

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443077

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Linknown

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

Unknown
08/12/2015
8/12/2015

Sampling Location: Depth Top: 32.85 Depth Base: 32.96

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443077 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48964											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 + \	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ctior	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
			. (/									
Sample	Sample	Test		D	w	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	00	10	•	10 (00)	Strength (MPa)
*	*	*	*	*	*	*						Strongth (Wir a)
Axial, Block or Lu	mp Tests											
,	•											
1	Lump	b		65	90	15.9	5850	7448	2.13	1.28	2.73	65.5
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10											Mean	65.5

Ireland

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443083

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Respire at Lab.:

No

S56158

BH04 - 48967

Unknown

Date of Receipt at Lab.: 08/12/2015
Date of Start of Test.: 8/12/2015

Sampling Location: Depth Top: 33.48 Depth Base: 33.6

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443083 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH04 48967											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an		(4)						,,	1001 pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00 k 0: 20												
1	Core	d		80	115	17.2	9200	11714	1.47	1.42	2.08	49.9
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												40.0
											Mean	49.9

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443091

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48975

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 2.8 Depth Base: 2.96

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443091 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48975											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid								Р		ilure in KN	
	ie core diam								ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 d1		ii (u)	10313					- //	1 CSt pa		ione
				_			_		_			
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete	-	-			-						
Axiai, block of Lt	ilip resis											
1	Core	d		80	170	13.0	13600	17316	0.75	1.55	1.16	27.8
2												-
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	27.8

Ireland

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443093

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48977

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 7.73 Depth Base: 7.84

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443093 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48977											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an		(4)						,,	1001 pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	mp Tests											
1	Core	d		80	110	21.0	8800	11205	1.87	1.40	2.63	63.0
2												
3												
4												
5												
6												
7												
8												
9 10												
10												00.0
											Mean	63.0

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443094

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

PLOS 48

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48978

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 8.1 Depth Base: 8.25

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443094 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48978											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	endi	icular to	loadin	ng directi	ion		Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	ı				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
Sample	Sample	Test		D	w	Р	Α	D*D	Is	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D			<u> </u>	10 (00)	Strength (MPa)
*	*	*	*	*	*	*						7 7
Axial, Block or Lu	mp Tests											
1	Core	d		80	160	19.5	12800	16297	1.20	1.52	1.82	43.8
2												
3												
4												
5												
6 7												
8												
9												
10												
10											Mean	43.8

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443095

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48979

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 8.54 Depth Base: 8.66

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443095 - Page 2 of 2

Client	Priority Cons	structio	n I to	1						1				
Sample Number	S56158	Sti UCIIO	11 LK	1										
Date Recived	8.12.15													
Sample Ref	BH05 48979													
Sample Kei	BH03 46979	, 												
Key:-														
itcy														
D	Always dista	Ince be	twee	en plate	en conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perr	end	icular t	o loadir	na directi	ion		Р		ilure in KI			
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W = (W1 + W2)/2 for irregular blocks.								Is (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	-	Test parallel to fabric			
	2 2 101 41		(4)											
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D			-	12 (00)	Strength (MPa)		
*	*	*	*	*	*	*						z a z a gar (a a z y		
Axial, Block or Lu	ımp Tests													
•														
1	Core	d		80	120	22.1	9600	12223	1.81	1.43	2.58	62.0		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	62.0		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443097

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Date of Start of Test.:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

No
S56158

BH05 - 48981

Unknown

08/12/2015

Sampling Location: Depth Top: 9.46 Depth Base: 9.57

8/12/2015

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443097 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48981											
Key : -												
•												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadir	na directi	ion		Р		ilure in KI	
	ie core diameter for axial tests.								ls	Uncorre	ected strei	ngth index
	W =(W1 + V	for ir	regular	blocks				Is (50)		ad streng	•	
Α	W*D minimu	ım x-se	ction	nal area	a				F		rrection fa	
	For axial or i	ck test	0.3W <	< D < W			#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	// Test parallel to fabric		
5.5	B B lot an		(4)						,,	1001 pa		
0	0			_	14/	1		D*D		_	1. (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Taete											
Axiai, block of Lt	imp rests											
1	Core	d		80	100	28.3	8000	10186	2.78	1.37	3.81	91.5
2	00.0			- 00		20.0		.0.00			0.0.	0.110
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	91.5

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443099

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48983

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 9.77 Depth Base: 9.92

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443099 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	t										
Sample Number	er S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48983													
Key : -														
D	Always dista	nce be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	V		
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F		rrection fa			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//		Test parallel to fabric			
	- D D 101 di		li (u)	10313					"	1 CSt pa		BITC		
							_							
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive		
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)		
Axial, Block or Lu	ımp Toete	"	-			-								
Axiai, Block of Lt	inp resis													
1	Core	d		80	126	20.5	10080	12834	1.60	1.44	2.31	55.4		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	55.4		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443100

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

RH05 - 4

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48984

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 10.2 Depth Base: 10.26

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443100 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48984													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/pi	for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N		
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index		
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for dia								//	Test parallel to fabric				
Sample	Sample	Test		D	w	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D			•	(00)	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Lump	b		80	48	17.7	3840	4889	3.62	1.16	4.21	101.0		
2														
3														
4														
5														
6 7														
8														
9														
10														
10											Mean	101.0		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443101

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

S56158

PH05

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48985

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 11.3 Depth Base: 11.45

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443101 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ł											
Sample Number															
Date Recived	8.12.15														
Sample Ref	BH05 48985														
Key:-															
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N			
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index			
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
А	W*D minimum x-sectional area								F		rrection fa				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//		Test parallel to fabric				
	B B lot ut	umotra	(u)						"	1 cot pa					
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)			
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)			
Axial, Block or Lu	ımp Tests														
, u.i.u.i, 2.00 k 0: 20															
1	Core	d		80	146	17.9	11680	14871	1.20	1.49	1.80	43.1			
2															
3															
4															
5															
6															
7															
8															
9															
10															
											Mean	43.1			

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443103

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48987

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 11.72 Depth Base: 11.83

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443103 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	ı										
Sample Number	er S56158													
Date Recived	8.12.15													
Sample Ref	BH05 48987													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for dia								//		Test parallel to fabric			
			(-,											
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D		10	-	10 (00)	Strength (MPa)		
*	*	*	*	*	*	*						ousiigui (iii a)		
Axial, Block or Lu	mp Tests													
,														
1	Core	d		80	100	23.9	8000	10186	2.35	1.37	3.22	77.2		
2														
3														
4														
5														
6														
7														
<u> </u>	1													
10														
10											Mean	77.2		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443105

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48989

Unknown

08/12/2015

Sampling Location: Depth Top: 13.5 Depth Base: 13.6

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443105 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48989											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	i.				Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		(u)	10313					"	1 CSt pa		abric .
				_							. (==)	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete	-	-			-						
Axiai, Block of Lt	inp resis											
1	Lump	b		80	43	22.7	3440	4380	5.18	1.13	5.88	141.1
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	141.1

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443106

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48990

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 13.7 Depth Base: 13.81

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443106 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	ı								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48990											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		(u)	10313					"	TCSt pa		ione
				_							. /==>	
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımp Toete					-						
Axiai, Block of Lt	ilip rests											
1	Core	d		80	108	22.1	8640	11001	2.01	1.40	2.80	67.3
2												
3												
4												
5												
6												
7												
8												
9												
10												27.0
											Mean	67.3

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443108

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48992

Unknown

08/12/2015

Sampling Location: Depth Top: 14.07 Depth Base: 14.15

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443108 - Page 2 of 2

Client Sample Number	Priority Cons S56158	Sti UCIIO	11 LIC	1								
Date Recived	8.12.15											
Sample Ref	BH05 48992											
-												
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ıg directi	on		Р		ilure in Kl	
	ie core diam								ls	Uncorre	ected strei	ngth index
	W =(W1 +								Is (50)		ad streng	•
Α	W*D minimu								F		rrection fa	
	For axial or i					: D < W			#			ar to fabric
D*D	= D*D for di				0.011				//	- ·	rallel to fa	
ט ט	- D D 101 d1	amena 	li (u)	เยรเร					- //	rest pa	liallei to la	biic
				_							. (==)	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete		-									
Axiai, Diock of Lt	imp rests											
1	Lump	b		80	70	19.8	5600	7130	2.78	1.27	3.52	84.4
2											0.00	
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	84.4

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443109

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48993

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 14.27 Depth Base: 14.4

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443109 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	ł								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48993											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	V
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	ictor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		li (u)	10313					"	1 CSt pa		BITC
				_	14/			D+D			1 (50)	
Sample	Sample	Test		D	W	P	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Tests											
Axiai, block of Lt	lip rests											
1	Core	d		80	95	22.0	7600	9677	2.27	1.36	3.08	74.0
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	74.0

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443111

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48995

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 15.43 Depth Base: 15.55

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443111 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48995											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	V
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ctior	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
			()									
Sample	Sample	Test		D	w	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	13	'	13 (00)	Strength (MPa)
*	*	*	*	*	*	*	***					Onongai (Wii u)
Axial, Block or Lu	mp Tests											
,												
1	Core	d		80	80	21.3	6400	8149	2.61	1.30	3.41	81.8
2												
3												
4												
5												
6												
7												
8												
9												
10												81.8
											Mean	01.0

Ireland

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443113

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 48997

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 16.45 Depth Base: 16.55

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443113 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 48997											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 d1		ii (u)	10313					"	1 CSt pa		ione
				_							. /==>	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Toete	-	-			-						
Axiai, block of Lt	ilip resis											
1	Core	d		80	95	20.0	7600	9677	2.07	1.36	2.80	67.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	67.3

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443119

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab:

08/12/2015

Date of Receipt at Lab.: 08/12/2015
Date of Start of Test.: 8/12/2015

Sampling Location: Depth Top: 22.07 Depth Base: 22.21

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443119 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50703											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perm	end	icular to	o loadin	na directi	ion		Р		ilure in KN	
	ie core diam								ls	Uncorre	ected strei	ngth index
	W =(W1 +								Is (50)		ad streng	•
A	W*D minimu								F		rrection fa	
/ \	For axial or i					- D < \M			#			ar to fabric
D+D					0.300	\ D \ VV				-		
D*D	= D*D for di	ametra I	ii (a)	tests					//	l est pa	rallel to fa	IDFIC
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	ımp Tests											
1	Core	d		80	150	23.0	12000	15279	1.51	1.50	2.26	54.3
2												
3										-		
4												
5 6												
9												
10												
10											Mean	54.3

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443120

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50704

Unknown

08/12/2015

Sampling Location: Depth Top: 22.9 Depth Base: 23

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443120 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50704											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an	umotra	(u)						"	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	_ VV D					Strength (Wh a)
Axial, Block or Lu	ımp Tests											
, s.i.d., 2.00k 01 20												
1	Lump	b		80	55	17.0	4400	5602	3.03	1.20	3.64	87.3
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												07.0
											Mean	87.3

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443121

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50705

Unknown
08/12/2015

Sampling Location: Depth Top: 23.94 Depth Base: 24.05

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443121 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50705											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in Kl	1
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)		ad streng	
Α	W*D minimu								F		rrection fa	
Λ,	For axial or i					- D - W			#			ar to fabric
D+D					0.300	\ D \ W						
D*D	= D*D for di	ametra I	ii (a)	tests					//	i est pa	rallel to fa	bric
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	ı				Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	100	20.8	9000	10186	2.04	1.37	2.80	67.2
2	Core	u		- 00	100	20.0	0000	10100	2.04	1.57	2.00	07.2
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	67.2

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443123

Page 1 of 2

LABORATORY TEST REPORT

8/12/2015

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Date of Start of Test.:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

No
S56158

BH05 - 50707

Unknown
08/12/2015

Sampling Location: Depth Top: 24.73 Depth Base: 24.85

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443123 - Page 2 of 2

Priority Cons	tructio	n Ltc	ı								
S56158											
8.12.15											
Always dista	nce be	twee	n nlate	en conta	act point	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
					ig unecu	1011		-	-		
·								Is (50)	Point lo	ad streng	th index
W*D minimu	m x-se	ection	nal area	a				F	Size co	rrection fa	ictor
For axial or i								#	Test pe	rpendicul	ar to fabric
= D*D for dia	ametra	l (d)	tests					//	Test pa	rallel to fa	bric
Sample	Toot		n	۱۸/	D	۸	D*D	lo		In (FO)	Approx. Compressive
							טט	15	Г	15 (30)	Strength (MPa)
*	type *	*	*	*	*	- VV D					Strength (Wir a)
mn Tests											
Core	d		75	90	18.0	6750	8594	2.09	1.32	2.77	66.4
										Mean	66.4
	Always dista Smallest wid ie core diam W = (W1 + ' W*D minimu For axial or i = D*D for di Sample type	S56158 8.12.15 BH05 50707 Always distance be Smallest width perpie core diameter for W = (W1 + W2)/2 W*D minimum x-see For axial or irregular = D*D for diametrar = Sample Test type type * mp Tests	S56158 8.12.15 BH05 50707 Always distance betwee Smallest width perpendi ie core diameter for axi W = (W1 + W2)/2 for ir W*D minimum x-section For axial or irregular blo = D*D for diametral (d) Sample Test type type * * *	8.12.15 BH05 50707 Always distance between plate Smallest width perpendicular to ite core diameter for axial tests W = (W1 + W2)/2 for irregular W*D minimum x-sectional area For axial or irregular block test = D*D for diametral (d) tests Sample Test D type type mm	S56158 8.12.15 BH05 50707 Always distance between platen conta Smallest width perpendicular to loadir ie core diameter for axial tests. W =(W1 + W2)/2 for irregular blocks W*D minimum x-sectional area For axial or irregular block test 0.3W < = D*D for diametral (d) tests Sample Test D W type type mm mm * * * * * * ** mp Tests	S56158 8.12.15 BH05 50707 Always distance between platen contact point Smallest width perpendicular to loading direct ie core diameter for axial tests. W = (W1 + W2)/2 for irregular blocks. W*D minimum x-sectional area For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P type type mm mm KN * * * * * * *	S56158 8.12.15 BH05 50707 Always distance between platen contact points Smallest width perpendicular to loading direction ie core diameter for axial tests. W =(W1 + W2)/2 for irregular blocks. W*D minimum x-sectional area For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P A type type mm mm KN =W*D * * * * * * * * * mp Tests	S56158 8.12.15 BH05 50707 Always distance between platen contact points Smallest width perpendicular to loading direction ie core diameter for axial tests. W =(W1 + W2)/2 for irregular blocks. W*D minimum x-sectional area For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P A D*D type type mm mm KN =W*D * * * * * * * * *	S56158	S56158 8.12.15 BH05 50707 Always distance between platen contact points Smallest width perpendicular to loading direction ie core diameter for axial tests. W = (W1 + W2)/2 for irregular blocks. W*D minimum x-sectional area F Size co For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P A D*D Is F type type mm mm KN = W*D * * * * * * * * * * * * * * * * * *	S56158 8.12.15 BH05 50707 Always distance between platen contact points Smallest width perpendicular to loading direction ie core diameter for axial tests. W = (W1 + W2)/2 for irregular blocks. W = (W1 + W2)/2 for irregular blocks. Is (50) Point load streng W*D minimum x-sectional area For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests Sample Test D W P A D*D Is F Is (50) Test parallel to fa W P A D*D Is F Is (50) Test parallel to fa Test parallel to fa Sample Test Test D Test

Date: 21st December 2015 Test Report Ref:. STR: 443125

VAT No: 9D53971I

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50709

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 26 Depth Base: 26.12

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443125 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50709)										
Key:-												
-												
D	Always dista	ince be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wic	th peri	end	icular to	o loadin	a directi	ion		Р		ilure in KI	
	ie core dian								ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)		ad streng	•
Α	W*D minimu								F		rrection fa	
	For axial or i					< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//	- ·	rallel to fa	
	- D D loi di		ii (u)	10313					"	1 CSt pa		Bile
		.			141			D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Tooto	,		,	^							
Axiai, block of Li	imp resis											
1	Core	d		75	103	23.0	7725	9836	2.34	1.36	3.18	76.4
2	00.0					20.0	1120	0000	2.01	1.00	0.10	70.1
3												
4												
5												
6												
7												
8												
9												-
10												
											Mean	76.4

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443141

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50725

Unknown
08/12/2015

Sampling Location: Depth Top: 32.44 Depth Base: 32.54

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443141 - Page 2 of 2

Client	Priority Cons	structio	n Lto	1								
Sample Number	S56158											
Date Recived	8.12.15											
Sample Ref	BH05 50725											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perm	end	icular to	oloadir	na directi	ion		Р		ilure in KI	
	ie core diam								ls	Uncorre	ected stre	ngth index
	W =(W1 +								Is (50)		ad streng	•
A	W*D minimu								F		rrection fa	
/ \	For axial or i					- D < \M			#			ar to fabric
D+D					0.300	\ D \ VV				- ·		
D*D	= D*D for di	ametra I	II (a)	tests					//	l est pa	rallel to fa	Dric
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	d		80	80	20.0	6400	8149	2.45	1.30	3.20	76.8
2										-		
3												
4												
5 6												
<u> </u>												
8		-										
9												
10												
10											Mean	76.8

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443143

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50727

Unknown

08/12/2015

Sampling Location: Depth Top: 32.83 Depth Base: 32.92

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443143 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d										
Sample Number	S56158													
Date Recived	8.12.15													
Sample Ref	BH05 50727													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadin	g directi	on		Р	Load fa	ilure in Kl	V		
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index		
	W =(W1 + V	N2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	D D for an	amoura	(4)						,,	1001 pa				
01-	0	T4		D	W		Δ.	D*D	1-	_	I- (FO)	A C		
Sample	Sample	Test type		mm	mm	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive Strength (MPa)		
no *	type *	type *	*	*	*	*	-VV D					Sueligui (MFa)		
Axial, Block or Lu	mn Tests													
Julian, Brook or Ea														
1	Lump	b		80	72	16.0	5760	7334	2.18	1.27	2.78	66.7		
2														
3														
4														
5														
6														
7														
8														
9														
10												66.7		
											Mean	00.1		

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443154

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH05 - 50736

Unknown

08/12/2015

8/12/2015

Sampling Location: Depth Top: 37.4 Depth Base: 37.5

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443154 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1											
Sample Number	S56158														
Date Recived	8.12.15														
Sample Ref	BH05 50736	<u> </u>													
Key:-															
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	end	icular to	o loadin	ng directi	ion		Р		ilure in KI				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 + W2)/2 for irregular blocks.								Is (50)		ad streng	•			
Α	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	- ·	Test parallel to fabric				
	D D lot ut		(u)						- "	T COL PO		5110			
0	0	- .		D	W	Р	•	D*D		F	1. (50)	A			
Sample	Sample	Test					A =W*D	ט"ט	ls	F	Is (50)	Approx. Compressive			
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)			
Axial, Block or Lu	ımn Toete														
Axiai, block of Lt	inp rests														
1	Core	d		80	95	24.0	7600	9677	2.48	1.36	3.36	80.7			
2											0.00				
3															
4															
5															
6												-			
7															
8															
9															
10															
											Mean	80.7			

VAT No: 9D53971I

Date: 21st December 2015 Test Report Ref:. STR: 443156

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No.:

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

No
S56158

BH05 - 50738

Unknown
08/12/2015

Sampling Location: Depth Top: 37.82 Depth Base: 37.92

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 443156 - Page 2 of 2

Client	Priority Cons	structio	n Lto	t											
Sample Number	S56158														
Date Recived	8.12.15														
Sample Ref	BH05 50738	3													
•															
Key : -															
•															
D	Always dista	nce be	twee	en plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wic	dth perr	end	icular to	o loadir	na directi	ion		Р		ilure in KN				
	Smallest width perpendicular to loading direction ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
							Is (50)		ad streng	•					
	W = (W1 + W2)/2 for irregular blocks.								· '						
Α	W*D minimum x-sectional area								F	-	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	l '	Test perpendicular to fabric				
D*D	= D*D for di	iametra	l (d)	tests					//	Test pa	bric				
Sample	Sample	Test		D	W	Р	Α	D*D	Is	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D				(3-2)	Strength (MPa)			
*	*	*	*	*	*	*						, , ,			
Axial, Block or Lu	ımp Tests														
1	Core	d		80	100	23.9	8000	10186	2.35	1.37	3.22	77.2			
2															
3															
4															
5															
6															
7															
8															
9															
10															
											Mean	77.2			

Priority Construction Ltd

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447819

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: **\$56595**

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48862

Unknown

18/1/2016

Sampling Location: Depth Top:10.36 Depth Base:10.46

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447819 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	t											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 48862														
Key:-															
-															
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	end	icular to	oloadin	ıq directi	on		Р	Load fa	ilure in KN	N			
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 + W2)/2 for irregular blocks.								Is (50)		ad streng	•			
Α	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	- ·	Test parallel to fabric				
ט ט	- D D 101 U1		li (u)	iesis					- //	Test pa	Tallel to la	BIIC			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no *	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)			
	*	*	*	*	*	*									
Axial, Block or Lu	imp rests														
1	Core	а		60	70	14.9	4200	5348	2.79	1.19	3.31	79.3			
2	Core	а		00	70	14.5	4200	3340	2.19	1.19	3.31	19.5			
3															
4															
5															
6															
7															
8															
9															
10															
							_				Mean	79.3			

Priority Construction Ltd

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447825

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48864

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:10.69 Depth Base:10.76

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447825 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	i l										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 48864	·												
•														
Key : -														
•														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perc	end	icular to	oloadir	a directi	on		Р	Load fa	ilure in KN	۱		
	Smallest width perpendicular to loading direct ie core diameter for axial tests.								ls	Uncorre	ected strei	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks	•			Is (50)		ad streng			
Α	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di								//	Test parallel to fabric				
00	- D D 101 U	amena	l (u)	10313					- //	Test pa	Tallel to la	ione		
					101			D+D			1 (50)			
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive		
no *	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)		
Axial, Block or Lu	ımn Toete	-	-			-								
Axiai, block of Lt	ilip resis													
1	Core	а		60	60	13.0	3600	4584	2.84	1.15	3.25	78.0		
2	0010	_ u			- 50	10.0	0000	7007	2.07	1.10	0.20	70.0		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	78.0		

Priority Construction Ltd

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447831

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48869

Unknown

18/1/2016

Sampling Location: Depth Top:13.35 Depth Base:13.45

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447831 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	d											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 48869														
Key:-															
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N			
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
А	W*D minimu								F		rrection fa				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//		Test parallel to fabric				
	- D D 101 di		(u)	10313					"	1 CSt pa		ibile			
				_	14/			D+D			1 (50)				
Sample	Sample	Test		D	W	P	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive			
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)			
Axial, Block or Lu	ımn Toete														
Axiai, block of Lt	inp resis														
1	Core	а		60	85	18.1	5100	6494	2.79	1.24	3.46	82.9			
2															
3															
4															
5															
6															
7															
8															
9															
10															
											Mean	82.9			

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447833

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48871

Unknown

18/1/2016

Sampling Location: Depth Top:13.70 Depth Base:13.80

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447833 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48871											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in KI	N
	ie core diam								ls	Uncorre	ected strei	ngth index
	W =(W1 +								Is (50)		ad streng	•
Α	W*D minimu								F		rrection fa	
	For axial or i					< D < W			#	Test ne	rnendicul	ar to fabric
D*D	= D*D for di				0.000				//	- ·	rallel to fa	
טט	- D D loi di	amena 	li (u)	lesis					- //	rest pa	lialiei lo la	
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
	*	*	*	*	*	*						
Axial, Block or Lu	imp lests											
1	Core	_		60	90	16.4	5400	6875	2.39	1.26	3.00	71.9
2	Core	а		60	90	10.4	5400	00/3	2.39	1.20	3.00	71.9
3												
4												
5												
6												
7												
8												
9												
10											_	
											Mean	71.9

Priority Construction Ltd Killmor Ballinasloe

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447834

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48872

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:16.30 Depth Base:16.40

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447834 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	i								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48872											
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					•			Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
			(-,						.,			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)
*	*	type *	*	*	*	*	- VV D					Strength (Wir a)
Axial, Block or Lu	ımp Tests											
John Diook of Le												
1	Core	а		60	95	16.1	5700	7257	2.22	1.27	2.82	67.7
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	67.7

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447836

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48874

Unknown

18/1/2016

Sampling Location: Depth Top:16.66 Depth Base:16.80

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447836- Page 2 of 2

Client	Priority Cons	structio	n Ltc	ı l								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48874											
•												
Key : -												
· ·												
D	Always dista	ince be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perc	end	icular to	oloadin	na directi	ion		Р	Load fa	ilure in KN	N
	ie core diam				1	J			ls			ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)		ad streng	
Α	W*D minimu	ım x-se	ction	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		li (u)	10313					"	1 CSt pa		
				_		-		D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, block of Lt	ilip resis											
1	Core	а		60	115	21.1	6900	8785	2.40	1.33	3.19	76.5
2	3310	_ u				21.1	0000	0,00	2.70	1.00	0.10	70.0
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	76.5

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447839

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48877

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:26.20 Depth Base:26.36

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447839 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48877											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	ion		Р	Load fa	ilure in Kl	V
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot an	umotra	(u)						- "	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Sueligui (Wii a)
Axial, Block or Lu	ımp Tests											
, s.i.d., 2.00k 01 20												
1	Core	а		60	165	17.2	9900	12605	1.36	1.44	1.96	47.1
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												47.4
											Mean	47.1

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447841

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48879

Unknown

18/1/2016

Sampling Location: Depth Top:26.61 Depth Base:26.70

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447841 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48879											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		li (u)	10313					"	1 CSt pa		ibile
				_	14/	-		D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, block of Lt	inp resis											
1	Core	а		60	85	13.2	5100	6494	2.03	1.24	2.52	60.5
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	60.5

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447844

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48882

Unknown

18/1/2016

Sampling Location: Depth Top:34.44 Depth Base:34.48

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447844 - Page 2 of 2

Client	Priority Cons	tructio	n Lto	i								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48882											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B loi di		(u)	10010					"	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00ii 01 20												
1	Core	d		39	60	10.6	2340	2979	3.56	1.04	3.70	88.8
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												00.0
											Mean	88.8

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447846

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48884

Unknown

18/1/2016

Sampling Location: Depth Top:34.73 Depth Base: 34.83

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447846 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48884											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		li (u)	10313					"	1 CSt pa		
				_	14/			D+D			1 (50)	
Sample	Sample	Test		D	W	P	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, block of Lt	inp resis											
1	Core	а		60	95	14.8	5700	7257	2.04	1.27	2.59	62.2
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	62.2

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447848

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48886

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:44.45 Depth Base:44.54

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447848 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48886											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadin	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		li (u)	10313					"	1 CSt pa		ibile
				_								
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımn Tooto	,		,		•						
Axiai, block of Lt	imp resis											
1	Core	а		60	75	16.8	4500	5730	2.93	1.21	3.53	84.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	84.8

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447851

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48888

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:44.79 Depth Base:44.90

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447851- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48888											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		(u)	10313					"	1 CSt pa		ione
		- .		_	147	-		D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, Block of Lt	imp rests											
1	Core	а		60	90	12.1	5400	6875	1.76	1.26	2.21	53.0
2												
3												
4												
5												
6												
7												
8												
9												
10												50.0
											Mean	53.0

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447858

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48894

Unknown

18/1/2016

Sampling Location: Depth Top:56.50 Depth Base:56.60

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447858 - Page 2 of 2

Client Sample Number	Priority Cons S56595	structio	n Ltc	i i								
Date Recived	18.1.16											
Sample Ref	BH01 48894											
Key:-												
	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					- '			P		ilure in KN	
V V	ie core diam					ig unecli	011		ls			ngth index
	W =(W1 +								ls (50)		ad streng	•
A	W*D minimu								IS (50)		rrection fa	
А						. D 147						
	For axial or i				0.3W <	< D < W			#	- ·		ar to fabric
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	bric
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	70	12.1	4200	5348	2.26	1.19	2.68	64.4
2	Core	а		- 00	70	12.1	4200	3340	2.20	1.13	2.00	04.4
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	64.4

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447860

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48896

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:56.85 Depth Base:56.93

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447860 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48896											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	B B lot di		(u)						"	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00 k 0: 20												
1	Core	а		60	70	12.0	4200	5348	2.24	1.19	2.66	63.9
2												
3												
4												
5												
6												
7												
8												
9												
10												00.0
											Mean	63.9

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447863

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 48899

Unknown

18/1/2016

Sampling Location: Depth Top:62.76 Depth Base:62.86

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447863- Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 48899											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	o loadin	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 d1		ii (u)	10313					"	1 CSt pa		
				_					_			_
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Avial Black and	· · · · · · ·			,		•						
Axial, Block or Lu	imp rests											
1	Core	а		60	85	18.2	5100	6494	2.80	1.24	3.47	83.4
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	83.4

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447865

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50857

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:63.05 Depth Base:63.16

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447865 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	t										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50857													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load failure in KN				
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di								//	Test parallel to fabric				
	B B lot ut	umotra	(u)						"	1 cot pa				
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)		
*	type *	type *	*	*	*	*	_ VV D					Strength (Wir a)		
Axial, Block or Lu	ımp Tests													
, u.i.u.i, 2.00 k 0: 20														
1	Core	а		60	125	14.6	7500	9549	1.53	1.35	2.07	49.6		
2														
3														
4														
5														
6														
7														
8														
9														
10												40.0		
											Mean	49.6		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447870

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50862

Unknown

18/1/2016

Sampling Location: Depth Top:66.00 Depth Base:66.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447870 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50862													
Key : -														
D	Always dista	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests				
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N		
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimu	ım x-se	ction	nal area	ì				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di								//	Test parallel to fabric				
			(-,											
Sample	Sample	Test		D	W	Р	Α	D*D	Is	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D			·	(00)	Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	80	14.5	4800	6112	2.37	1.22	2.90	69.6		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	69.6		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447872

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50864

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:66.34 Depth Base:66.45

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447872- Page 2 of 2

Client	Priority Cons	structio	n Ltc	l											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50864														
Key : -															
•															
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest width perpendicular to loading direction								Р	Load fa	ilure in KI	V			
	ie core diam				1	5			ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor			
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test perpendicular to fabric					
D*D									//		Test parallel to fabric				
	B B lot ut		(4)						,,	1001 pc					
Sample	Sample	Test		D	W	P	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D	00	10	<u> </u>	15 (00)	Strength (MPa)			
*	*	*	*	*	*	*	*** 5					Strongth (iii a)			
Axial, Block or Lu	mp Tests														
•															
1	Core	а		60	105	16.1	6300	8021	2.01	1.30	2.61	62.6			
2															
3															
4															
5															
6															
7															
8															
9															
10											ļ .				
											Mean	62.6			

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447880

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50872

Unknown

18/1/2016

Sampling Location: Depth Top:79.10 Depth Base:79.18

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447880 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50872													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р	Load failure in KN				
	ie core diam								ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)		ad streng			
A	W*D minimu								F		rrection fa			
, , , , , , , , , , , , , , , , , , ,	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D+D	1				0.300	\ D \ W				Test parallel to fabric				
D*D	= D*D for di	ametra I	ii (a)	tests					//	i est pa	irallel to ta	ADRIC		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	mp Tests													
1	Core	а		60	85	11.3	5100	6494	1.74	1.24	2.16	51.8		
2	Core	а		- 00	00	11.5	3100	0494	1.74	1.24	2.10	31.0		
3														
4														
5														
6														
7														
8														
9														
10											ļ.,			
											Mean	51.8		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447882

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50874

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:79.40 Depth Base:79.52

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447882 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1										
Sample Number														
Date Recived	18.1.16													
Sample Ref	BH01 50874													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	ion		Р	Load failure in KN				
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimu								F		rrection fa			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for di				0.011				//	Test parallel to fabric				
00	- D D 101 U	amena	li (u)	lesis					11	Test pa	li allei to ia	IDIIC		
Sample	Sample	Test		D	W	Р	A	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)		
	· · · · · · · · · · · · · · · · · · ·	*	*	*	*	*								
Axial, Block or Lu	imp rests													
1	Core	а		60	110	12.8	6600	8403	1.52	1.31	2.00	48.0		
2	00.0			- 00		12.0		0.00			2.00	.6.0		
3														
4														
5														
6														
7														
8														
9														
10											ļ			
											Mean	48.0		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447891

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: **\$56595**

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50883

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:92.35 Depth Base:92.47

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447891- Page 2 of 2

Client	Priority Cons	tructio	n Lto	t											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50883	-													
Key:-															
D	Always dista	nce be	twee	en plate	n conta	act points	s		D*D	= 4A/p	i for axial ((a) and irregular block (b) tests			
W	Smallest wid								Р		ilure in KN				
	ie core diam								ls	Lincorre	ected strer	ngth index			
					-										
	W =(W1 + V								Is (50)	-	ad streng				
Α	W*D minimu								F		Size correction factor				
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test pa	rallel to fa	bric			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D				.5 (55)	Strength (MPa)			
*	*	*	*	*	*	*						zaznajan (m. z.)			
Axial, Block or L	ump Tests														
·	•														
1	Core	а		60	85	16.0	5100	6494	2.46	1.24	3.05	73.3			
2															
3															
4															
5															
6															
7															
8															
9															
10															
											Mean	73.3			

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447893

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50885

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:92.70 Depth Base:92.79

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447893- Page 2 of 2

Client	Priority Cons	structio	n Lto	t								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50885											
Key : -												
D	Always dista	nce be	twee	en plate	en conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid			-		•			Р		ilure in KN	
	ie core diam								Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks	_			Is (50)		ad streng	<u> </u>
А	W*D minimu								F		rrection fa	
	For axial or i					< D < W			#			ar to fabric
D*D	= D*D for di				0.011				//		rallel to fa	
	- D D 101 U		ii (u)	10313					- //	1 CSt pa		ione
										<u> </u>	. (==)	
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no *	type	type *	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Axial, Block or Lu	ımp Toete				-							
Axiai, block of Lt	inp resis											
1	Core	а		60	80	14.8	4800	6112	2.42	1.22	2.96	71.1
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	71.1
									l			

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447901

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50893

Unknown

18/1/2016

Sampling Location: Depth Top:108.15 Depth Base:108.22

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447901- Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50893											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/pi	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ection	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for diametral (d) tests								//		rallel to fa	
	B B lot ut		(4)						,,	1 oot pu		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	18 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	_ VV D					Sueligui (ivii a)
Axial, Block or Lu	mp Tests											
7 U												
1	Core	а		60	70	11.5	4200	5348	2.15	1.19	2.55	61.2
2												
3												
4												
5												
6	1											
7												
<u>8</u> 9	-											
10												
10											Mean	61.2

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447903

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50895

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:108.51 Depth Base:108.62

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447903 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	i								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50895											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	For axial or irregular block test 0.3 = D*D for diametral (d) tests								//		rallel to fa	
			(-,									
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)
*	*	*	*	*	*	*	-W D					Otterigui (ivii a)
Axial, Block or Lu	mp Tests											
, s.i.d., 2.00k 0: 20												
1	Core	а		60	75	13.9	4500	5730	2.43	1.21	2.92	70.2
2												
3												
4												
5												
6												
7												
8												
9												
10												70.0
											Mean	70.2

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447909

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50901

Unknown

18/1/2016

Sampling Location: Depth Top:115.89 Depth Base:116.05

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447909- Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50901											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	ım x-se	ection	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for diametral (d) tests								//		rallel to fa	
	D D lot an		(4)						,,	1001 pc		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	_ VV D					Sueligui (ivii a)
Axial, Block or Lu	mp Tests											
1	Core	а		60	110	14.0	6600	8403	1.67	1.31	2.19	52.5
2												
3												
4												
5												
6												
7												
<u>8</u> 9	1											
10												
10											Mean	52.5

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447911

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50903

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:116.29 Depth Base:116.39

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447911- Page 2 of 2

Client	Priority Cons	structio	n Ltc	I								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50903											
Key : -												
D	Always dista	nce be	twee	n nlate	en conta	act point	9		D*D	= 4A/n	for axial	(a) and irregular block (b) tests
W	Smallest wid								P		ilure in Kl	
VV	ie core diam					ig unecu	011		-			
	1								Is			ngth index
	W =(W1 +								Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ection	nal area	a				F	Size co	rrection fa	ictor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di	tests					//	Test pa	rallel to fa	bric		
										•		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wir a)
Axial, Block or Lu	ımp Tests											
Julian, Brook or Ed	1000											
1	Core	а		60	95	14.8	5700	7257	2.04	1.27	2.59	62.2
2												-
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	62.2

Priority Construction Ltd Killmor Ballinasloe Co. Galway Date: 24th February 2016 Test Report Ref:. STR: 447916

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Ireland

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50908

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:128.80 Depth Base:128.89

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447916- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50908											
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadin	ıq directi	ion		Р	Load fa	ilure in KI	N
	ie core diam				1				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point Ic	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	erpendicula	ar to fabric
D*D	For axial or irregular block test 0. = D*D for diametral (d) tests								//		rallel to fa	
00	- D D loi di		(u)	10313					- //	T CSt pe		ishic
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15		15 (30)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wir a)
Axial, Block or Lu	ımp Tests											
, 2.00 0. 20												
1	Core	а		60	75	16.0	4500	5730	2.79	1.21	3.37	80.8
2												
3												
4												
5												
6												
7												
8												
9												
10											ļ .	
											Mean	80.8

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447918

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50910

Unknown

18/1/2016

Sampling Location: Depth Top:129.14 Depth Base:129.21

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447918 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50910											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	V
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	For axial or irregular block test 0.3 = D*D for diametral (d) tests								//		rallel to fa	
	D D for an		(4)						,,	1001 pa		
0	0	T4		_	14/	1	Δ.	D*D	1-		I- (FO)	A C
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MPa)
Axial, Block or Lu	mn Tests											
Axidi, Block of Ed	IIIP TOSIS											
1	Core	а		60	60	14.0	3600	4584	3.05	1.15	3.50	84.0
2												
3												
4												
5												
6												
7												
8												
9												
10												84.0
											Mean	04.0

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447922

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50914

Unknown

18/1/2016

Sampling Location: Depth Top:133.21 Depth Base:133.32

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447922 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50914											
Key:-												
-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid					•			Р		ilure in Kl	• • • • • • • • • • • • • • • • • • • •
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	N2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or in	regula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	For axial or irregular block test 0.3 = D*D for diametral (d) tests								//		rallel to fa	
5.5	D D for an	amoura	(4)						,,	1001 pa		
		- .				-		D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete				-							
Axiai, block of Lu	inp rests											
1	Core	а		60	85	15.1	5100	6494	2.33	1.24	2.88	69.2
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	69.2

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447924

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50916

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:133.54 Depth Base:133.63

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447924 - Page 2 of 2

Client	Priority Cons	tructio	n Ltd	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50916											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia						//		rallel to fa			
	B B loi di		(u)	10010					"	1 cot pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, s.i.d., 2.00k 01 20												
1	Core	а		60	85	13.5	5100	6494	2.08	1.24	2.58	61.8
2												
3												
4												
5												
6												
7												
<u>8</u> 9												
10												
10												61.8
											Mean	01.0

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447931

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50923

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:146.20 Depth BaseBase:146.30

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447931 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50923											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadin	ng directi	ion		Р		ilure in Kl	
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + \	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for diametral (d) tests								//		rallel to fa	
	2 2 101 411		(4)	10010								
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)
*	*	*	*	*	*	*	-W D					Otterigui (ivii a)
Axial, Block or Lu	mp Tests											
1	Core	а		60	85	12.0	5100	6494	1.85	1.24	2.29	55.0
2												
3												
4												
5												
6												
7												
8												
9												
10												55.0
											Mean	33.0

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447933

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50925

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:146.52 Depth Base146.61

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447933 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50925)										
Key : -												
D	Always dista	ince be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadin	ıq directi	ion		Р	Load fa	ilure in KN	N
	ie core diam								ls	Uncorre	ected stre	ngth index
	W =(W1 +								Is (50)		ad streng	•
Α	W*D minimu								F		rrection fa	
	For axial or i					: D < W			#	Test ne	rnendicul	ar to fabric
D*D	= D*D for di				0.000				//	- ·	rallel to fa	
טט	- D D loi di	amena 	li (u)	lesis					- //	rest pa	lialiei lo la	iblic
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type		mm	mm	KN *	=W*D					Strength (MPa)
	*	*	*	*	*	*						
Axial, Block or Lu	imp lests											
1	Core			60	95	14.9	5700	7257	2.05	1.27	2.61	62.6
2	Core	а		60	95	14.9	3700	1231	2.03	1.21	2.01	02.0
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	62.6

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447942

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

No

Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50933

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:156.33 Depth Base:156.44

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447942- Page 2 of 2

Client	Priority Cons	structio	n Ltc	i								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50933											
_												
Key : -												
j												
D	Always dista	nco ho	two	n plate	n conto	act point	<u> </u>		D*D	- 4 A /p	i for avial	(a) and irregular block (b) tests
W	Smallest wid					ig airecti	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks	-			Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	a				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di				0.011				//		rallel to fa	
	- D D 101 U		li (u)	lesis					- //	Test pa		IDIIC
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no *	type	type		mm	mm	KN	=W*D					Strength (MPa)
		*	*	*	*	*						
Axial, Block or Lu	ımp Tests											
1	Core	а		60	110	11.2	6600	8403	1.33	1.31	1.75	42.0
2												
3 4												
5												
6												
7												
8												
9												
10												
											Mean	42.0

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447944

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50935

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:156.68 Depth Base:156.76

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447944- Page 2 of 2

Client	Priority Cons	structio	n Ltc	t											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50935	5													
Key:-															
D	Always distance between platen contact points D*D = 4A/pi for axial (a) and irregular block										(a) and irregular block (b) tests				
W	Smallest wid	dth perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N			
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W =(W1 + W2)/2 for irregular blocks.							Is (50)	Point lo	ad streng	th index			
Α	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for di	iametra	ıl (d)	tests					//	Test pa	abric				
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D				(2.2)	Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	ımp Tests														
1	Core	а		60	90	10.8	5400	6875	1.57	1.26	1.97	47.3			
2															
3															
4															
5															
6															
7															
8															
9 10															
10											Mean	47.3			

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447946

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50937

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:165.17 Depth Base:165.25

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447946 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50937													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	dth perp	end	icular to	loadir	ng directi	ion		Р	Load failure in KN				
		e core diameter for axial tests.							ls	Uncorre	ected stre	ngth index		
	W =(W1 +	regular	blocks				Is (50)		ad streng					
Α	W*D minimum x-sectional area								F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D									//		Test parallel to fabric			
0.0	D D lot di		(u)						"	Tool po				
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D	00	10	<u> </u>	10 (00)	Strength (MPa)		
*	*	*	*	*	*	*						gueriga (m. a.)		
Axial, Block or Lu	ımp Tests													
•	· .													
1	Core	а		60	75	15.4	4500	5730	2.69	1.21	3.24	77.7		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	77.7		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447948

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50939

Unknown

18/1/2016

Sampling Location: Depth Top:166.00 Depth Base:166.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447948 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50939													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	V		
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 + \	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
А	W*D minimu	m x-se	ction	nal area	ı				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	<i>D D</i> 101 d.t		(4)						,,	1001 pc				
0	0	T		D	W	1	•	D+D		_	1. (50)			
Sample	Sample	Test type		mm	mm	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive Strength (MPa)		
no *	type *	type *	*	*	*	*	-VV D					Sueligui (MFa)		
Axial, Block or Lu	mn Tests													
Julian, Brook or Ea														
1	Core	а		60	85	14.1	5100	6494	2.17	1.24	2.69	64.6		
2														
3														
4														
5														
6														
7														
8														
9														
10												64.6		
											Mean	U 1 .U		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447953

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50944

Unknown

18/1/2016

Sampling Location: Depth Top:175.18 Depth Base:175.26

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447953 - Page 2 of 2

Client	Priority Cons	structio	n Ltd											
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50944													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	endi	cular to	o loadir	ng direct	ion		Р	Load failure in KN				
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 + W2)/2 for irregular blocks.								Is (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F		rrection fa			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//		Test parallel to fabric			
	B B lot ut		(u)	10010					- "	1 cot pa				
				_	101			D+D			1 (50)			
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive		
no *	type *	type *	*	mm *	mm *	KN *	=\\\'\'\'					Strength (MPa)		
Axial, Block or Lu	ımn Toete													
Axiai, block of Lt	lip rests													
1	Core	а		60	85	12.8	5100	6494	1.97	1.24	2.44	58.6		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	58.6		

Priority Construction Ltd Killmor Ballinasloe Co. Galway

Ireland

Date: 24th February 2016 Test Report Ref:. STR: 447956

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50946

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:175.50 Depth Base:175.59

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447956- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	1										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50944													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in Kl	V		
	ie core diameter for axial tests.								ls	Uncorre	ected stre	ngth index		
	W =(W1 + W2)/2 for irregular blocks.								Is (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F		rrection fa			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	B B lot an	umotra	(u)						"	1 cot pa				
Cample	Cample	Test		D	W	Р	Α	D*D	ls	F	In (FO)	Anney Commencia		
Sample no	Sample type	type		mm	mm	KN	=W*D	טט	15	Г	Is (50)	Approx. Compressive Strength (MPa)		
*	type *	type *	*	*	*	*	- VV D					Strength (Wir a)		
Axial, Block or Lu	ımp Tests													
John Diook of Le														
1	Core	а		60	85	12.8	5100	6494	1.97	1.24	2.44	58.6		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	58.6		

Priority Construction Ltd Killmor Ballinasloe Co. Galway Date: 24th February 2016 Test Report Ref:. STR: 447961

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Ireland

Certificate of sampling received:

No

Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50951

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:183.90 Depth Base:184.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447961 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 50951														
Key:-															
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid					•			Р		ilure in Kl				
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index			
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric					
			(-,												
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)			
*	*	*	*	*	*	*	-W D					Otterigui (ivii a)			
Axial, Block or Lu	ımp Tests														
, u.i.u.i, 2.00ii 01 20															
1	Core	а		60	110	13.0	6600	8403	1.55	1.31	2.03	48.8			
2															
3															
4															
5															
6															
7															
8															
9															
10												10.0			
											Mean	48.8			

Priority Construction Ltd Killmor Ballinasloe

Co. Galway Ireland

Date: 24th February 2016 Test Report Ref:. STR: 447963

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50953

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:184.25 Depth Base:184.34

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :447963- Page 2 of 2

Client	Priority Cons	tructio	n Lto	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50953											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		(u)	10313					"	1 CSt pa		ione
		- .		_	14/			D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Taete											
Axiai, Block of Lt	imp rests											
1	Core	а		60	90	16.0	5400	6875	2.33	1.26	2.92	70.1
2												
3												
4												
5												
6												
7												
8												
9												
10												70.4
											Mean	70.1

Priority Construction Ltd Killmor Ballinasloe Co. Galway

Ireland

Date: 24th February 2016 Test Report Ref:. STR: 447967

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50957

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:194.60 Depth Base:194.67

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447967 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50957											
Key:-												
	Always dista	nce be	twee	n plate	n conta	act points	9		D*D	= 4A/n	i for axial	(a) and irregular block (b) tests
W	Smallest wid					-			P		ilure in KN	
V V	ie core diam					ig uncoll	511		ls			ngth index
	W =(W1 +								Is (50)		ad streng	•
A	W*D minimu								F		rrection fa	
	For axial or i					< D < W			#			ar to fabric
D*D	= D*D for di								//	- ·	rallel to fa	
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				` '	Strength (MPa)
*	*	*	*	*	*	*						
Axial, Block or Lu	mp Tests											
1	Core	а		60	60	8.0	3600	4584	1.75	1.15	2.00	48.0
2	00.0			- 00	- 00	0.0	- 0000	1001	1.70	10	2.00	10.0
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	48.0

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447969

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50959

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:194.90 Depth Base:194.99

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447969 - Page 2 of 2

Client	Priority Cons	structio	n Ltd	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50959)										
Key:-												
-												
D	Always dista	nce be	twee	n plate	n conta	act points	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perm	end	icular to	oloadir	na directi	ion		Р		ilure in KI	
	ie core dian								ls	Uncorre	ected strei	ngth index
	W =(W1 +								Is (50)		ad streng	•
Α	W*D minimu								F		rrection fa	
A												
	For axial or				0.300 <	< D < W			#	- ·		ar to fabric
D*D	= D*D for d	iametra	l (d)	tests					//	Test pa	rallel to fa	bric
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D					Strength (MPa)
*	*	*	*	*	*	*						• , , ,
Axial, Block or Lu	mp Tests											
1	Core	а		60	80	12.0	4800	6112	1.96	1.22	2.40	57.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	57.6

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447972

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50962

Unknown

18/1/2016

Sampling Location: Depth Top:204.62 Depth Base:204.70

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447972- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50962											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadir	ng directi	ion		Р	Load fa	ilure in Kl	7
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	B B lot ut		(4)						,,	1001 pa		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	- VV D					Strength (Wil a)
Axial, Block or Lu	ımp Tests											
, u.i.u.i, 2.00 k 0: 20												
1	Core	а		60	80	17.4	4800	6112	2.85	1.22	3.48	83.6
2												
3												
4												
5												
6												
7												
8												
9												
10												02.6
											Mean	83.6

Killmor Ballinasloe Co. Galway Ireland Date: 11th April 2016 Test Report Ref:. STR: 447974

Page 1 of 2

Order No:

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50964

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:204.95 Depth Base:205.02

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447974 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	ı								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50964											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	g directi	on		Р	Load fa	ilure in Kl	V
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or in	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	D D for an		(4)						,,	1001 pc		
0	0	T4		D	W		Δ.	D*D	1-	_	I- (FO)	A C
Sample	Sample	Test		mm	mm	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	*	*	*	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Tests											
Julian, Brook or Ea	l locto											
1	Core	а		60	85	13.2	5100	6494	2.03	1.24	2.52	60.5
2												
3												
4												
5												
6												
7												
8												
9												
10												CO 5
											Mean	60.5

Priority Construction Ltd Killmor Ballinasloe Co. Galway Date: 24th February 2016 Test Report Ref:. STR: 447980

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Ireland

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50970

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:211.77 Depth Base:211.85

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447980- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50970											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ctior	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for dia								//		rallel to fa	
	D D IOI GI		(u)	10010					- //	1 cot pu		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)
*	type *	type *	*	*	*	*	_ VV D					Sueligui (ivii a)
Axial, Block or Lu	mp Tests											
1	Core	а		60	75	11.2	4500	5730	1.95	1.21	2.36	56.5
2												
3												
4												
5												
6												
7												
<u> </u>												
10												
10											Mean	56.5

Point load test results STR: 447982- Page 2 of 2

Oliana	Dai - ait - C	. 4 4	- 17			1				1		
Client	Priority Cons	structio	n Lto	1								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50972											
Key:-												
D	Always dista	nce be	twee	en plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular t	o loadir	g directi	ion		Р	Load fa	ilure in KN	N .
	ie core diam	neter fo	r axi	al tests	3.				ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ection	nal area	a				F	Size co	rrection fa	ector
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	rallel to fa	bric
										i i		
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D				(/	Strength (MPa)
*	*	*	*	*	*	*						3 (/
Axial, Block or Lu	ımp Tests											
1	Core	а		60	100	17.0	6000	7639	2.23	1.29	2.86	68.7
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	68.7

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447982

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50972

Unknown

18/1/2016

Sampling Location: Depth Top:212.10 Depth Base:212.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447989

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: **\$56595**

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50979

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:225.65 Depth Base:225.74

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447989- Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50979											
Key : -												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р		ilure in Kl	
	ie core diam	neter fo	r axi	al tests	-				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D 101 di		ii (u)	10313					"	1 CSt pa		
				_							. /==>	
Sample	Sample	Test		D	W	Р	A	D*D	Is	F	Is (50)	Approx. Compressive
no	type	type	*	mm *	mm *	KN *	=W*D					Strength (MPa)
Avial Block and	· · · · ·			,		•						
Axial, Block or Lu	imp rests											
1	Core	а		60	95	19.1	5700	7257	2.63	1.27	3.34	80.3
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	80.3

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447991

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: S56595
Client Ref. No.: BH01 - 50981

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

Sampling Location: Depth Top:225.95 Depth Base:226.03

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447991 Page 2 of 2

Client	Priority Cons	tructio	n Ltd	ł								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50981											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	th perp	end	icular to	oloadir	ng directi	on		Р	Load fa	ilure in Kl	N
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	- D D loi di		(u)	10313					"	1 CSt pa		abric .
		- .		_	14/	-		D+D			1 (50)	
Sample	Sample	Test		D	W	Р	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, Block of Lt	imp rests											
1	Core	а		60	95	17.2	5700	7257	2.37	1.27	3.01	72.3
2												
3												
4												
5												
6												
7												
8												
9												
10												70.0
											Mean	72.3

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447995

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50985

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:231.65 Depth Base:231.78

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447994- Page 2 of 2

Client	Priority Cons	structio	n Ltd									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50985											
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	endi	cular to	o loadir	ng direct	ion		Р		ilure in Kl	, , , , , , , , , , , , , , , , , , , ,
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected stre	ngth index
	W =(W1 +	W2)/2	for in	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	D D lot ut		(u)	10010					- "	1 cot pa		
				_	101	-		D+D		_	1 (50)	
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=000					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, Diock of Le	inp rests											
1	Core	а		60	120	15.1	7200	9167	1.65	1.34	2.21	53.0
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	53.0

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 447997

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50987

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:232.00 Depth Base:232.10

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 447997- Page 2 of 2

Client	Priority Cons	structio	n Ltc	d								
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50987											
Key : -												
-												
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	icular to	oloadin	ıq directi	ion		Р	Load fa	ilure in KI	N
	ie core diam				1				ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
Α	W*D minimu	ım x-se	ction	nal area	1				F	Size co	rrection fa	actor
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test pe	rpendicula	ar to fabric
D*D	= D*D for di								//		rallel to fa	
00	- D D 101 d1		(u)	10313					- //	1 CSt pa		ishic
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive
no	type	type		mm	mm	KN	=W*D	טט	15	<u>'</u>	15 (50)	Strength (MPa)
*	*	*	*	*	*	*	***					Suchigan (ivii a)
Axial, Block or Lu	mp Tests											
,												
1	Core	а		60	70	14.0	4200	5348	2.62	1.19	3.11	74.6
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	74.6

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448003

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50993

Unknown

18/1/2016

Sampling Location: Depth Top:242.82 Depth Base:242.92

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448003- Page 2 of 2

Client	Priority Cons	structio	n Ltc									
Sample Number	S56595											
Date Recived	18.1.16											
Sample Ref	BH01 50993											
Key:-												
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	for axial	(a) and irregular block (b) tests
W	Smallest wid	Ith perp	end	cular to	o loadir	ng direct	ion		Р	Load fa	ilure in Kl	N
	ie core diam	neter fo	r axi	al tests	3.				ls	Uncorre	ected strei	ngth index
	W =(W1 +	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index
А	W*D minimu								F		rrection fa	
	For axial or i	rregula	ır blo	ck test	0.3W <	< D < W			#	Test pe	rpendicul	ar to fabric
D*D	= D*D for di								//		rallel to fa	
	D D lot ut		(u)	10010					- "	1 cot pa		
0	0	- .		_	10/			D+D		_	1. (50)	1
Sample	Sample	Test		D	W	P KN	A =W*D	D*D	Is	F	Is (50)	Approx. Compressive
no *	type *	type *	*	mm *	mm *	KN *	=\\\'\'\'					Strength (MPa)
Axial, Block or Lu	ımn Toete											
Axiai, block of Lt	lip rests											
1	Core	а		60	95	12.8	5700	7257	1.76	1.27	2.24	53.8
2												
3												
4												
5												
6												
7												
8												
9												
10												
											Mean	53.8

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448005

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50995

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:243.14 Depth Base:243.23

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448005 - Page 2 of 2

Client	Priority Cons	n Ltc	t											
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50995													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	ion		Р	Load failure in KN				
	ie core diameter for axial tests.								Is	Uncorre	ected strei	ngth index		
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	D D for an		(4)						,,	1001 pa				
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (50)	Strength (MPa)		
*	*	type *	*	*	*	*	- VV D					Sueligui (Wii a)		
Axial, Block or Lu	mp Tests													
, man, 210011 01 20														
1	Core	а		60	85	14.1	5100	6494	2.17	1.24	2.69	64.6		
2														
3														
4														
5														
6														
7														
<u> </u>														
10														
10											Mean	64.6		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448007

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50997

Unknown

18/1/2016

18/1/2016

Sampling Location: Depth Top:251.81 Depth Base:251.95

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448007 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	d										
Sample Number	r S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50997													
Key:-														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	Ith perp	end	icular to	oloadir	ng directi	on		Р	Load failure in KN				
	ie core diameter for axial tests.								Is	Uncorre	ected stre	ngth index		
	W =(W1 + W2)/2 for irregular blocks.								Is (50)	Point lo	ad streng	th index		
А	W*D minimum x-sectional area								F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//		Test parallel to fabric			
	B B lot ut		(u)						"	1 cot pa				
0	0	Test		D	W	Р	Α	D*D	ls	F	I- (FO)	A		
Sample no	Sample type	type		mm	mm	KN	=W*D	טט	IS	Г	Is (50)	Approx. Compressive Strength (MPa)		
*	type *	type *	*	*	*	*	-VV D					Strength (MFa)		
Axial, Block or Lu	ımn Tests													
, brian, Brook or Ec														
1	Core	а		60	110	14.0	6600	8403	1.67	1.31	2.19	52.5		
2														
3														
4														
5														
6	-													
7														
8														
9														
10												50.5		
											Mean	52.5		

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448009

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 50999

Unknown

18/1/2016

Sampling Location: Depth Top:252.22 Depth Base:252.32

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448009- Page 2 of 2

Client	Priority Cons	structio	n Ltd	1										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 50999)												
Key : -														
D	Always dista	nco bo	two	n plata	n conto	act point			D*D	- 4A/n	i for avial	(a) and irregular block (b) tests		
	+					-								
W	Smallest width perpendicular to loading direction ie core diameter for axial tests.								P .		ilure in KN			
	ie core diam	neter fo	r axi	al tests	i.				ls	Uncorre	ected strei	ngth index		
	W =(W1 + W2)/2 for irregular blocks.								Is (50)	Point lo	ad streng	th index		
Α	W*D minimum x-sectional area								F	Size co	Size correction factor			
	For axial or irregular block test 0.3W < D < W								#	Test pe	Test perpendicular to fabric			
D*D	= D*D for di	ametra	l (d)	tests					//	Test pa	Test parallel to fabric			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive		
no	type	type		mm	mm	KN	=W*D					Strength (MPa)		
*	*	*	*	*	*	*								
Axial, Block or Lu	ımp Tests													
1	Core	а		60	90	14.0	5400	6875	2.04	1.26	2.56	61.4		
2	Core	a		00	30	14.0	3400	0073	2.04	1.20	2.30	01.4		
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	61.4		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448011

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 51001

Unknown

18/1/2016

Sampling Location: Depth Top:259.72 Depth Base:259.82

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448011- Page 2 of 2

Client	Priority Cons	structio	n Ltc	t											
Sample Number	S56595														
Date Recived	18.1.16														
Sample Ref	BH01 51001														
Key : -															
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests			
W	Smallest wid			_ •		•			Р	Load failure in KN					
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index			
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index			
Α	W*D minimum x-sectional area								F	Size co	Size correction factor				
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric					
D*D	= D*D for diametral (d) tests								//	Test pa	Test parallel to fabric				
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive			
no	type	type		mm	mm	KN	=W*D					Strength (MPa)			
*	*	*	*	*	*	*									
Axial, Block or Lu	mp Tests														
1	Core	а		60	85	14.0	5100	6494	2.16	1.24	2.67	64.1			
2															
3															
4															
5															
6															
7 8															
9															
10															
											Mean	64.1			

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448013

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Unknown

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 51003

Unknown

18/1/2016

Sampling Location: Depth Top:260.06 Depth Base:260.18

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :448013- Page 2 of 2

Client	Priority Cons	tructio	n Ltc	l										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 51003													
Key : -														
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid	th perp	end	icular to	loadin	ng directi	on		Р	Load fa	ilure in Kl	N		
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 + V	W2)/2 f	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor		
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	D D for an		(4)						,,	1001 pa				
0	0	T4		D	14/	1	Δ.	D*D	1-		I- (FO)	A		
Sample	Sample	Test			W	P KN	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive		
no *	type *	type *	*	mm *	mm *	*	-VV D					Strength (MPa)		
Axial, Block or Lu	mn Tests													
Axidi, Block of Ed	IIIP TOSIS													
1	Core	а		60	120	12.8	7200	9167	1.40	1.34	1.87	44.9		
2														
3														
4														
5														
6														
7														
8														
9														
10												44.0		
											Mean	44.9		

Priority Construction Ltd Killmor

Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448015

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56595

Client Ref. No.: BH01 - 51005
Date and Time of Sampling: Unknown

Date of Receipt at Lab.: 18/1/2016
Date of Start of Test.: 18/1/2016

Sampling Location: Depth Top:262.63 Depth Base:262.73

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR: 448015 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	i										
Sample Number	S56595													
Date Recived	18.1.16													
Sample Ref	BH01 51005													
Key : -														
-														
D	Always dista	nce be	twee	n plate	n conta	act point	s		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests		
W	Smallest wid								Р	Load failure in KN				
	ie core diam	eter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index		
	W =(W1 + V	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index		
Α	W*D minimu								F		rrection fa			
	For axial or irregular block test 0.3W < D < W								#	Test perpendicular to fabric				
D*D	= D*D for diametral (d) tests								//	Test parallel to fabric				
	2 2 101 411		(4)											
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	In (FO)	Annual Communicative		
no	type	type		mm	mm	KN	=W*D	טט	15	Г	Is (50)	Approx. Compressive Strength (MPa)		
*	type *	type *	*	*	*	*	-VV D					Strength (MFa)		
Axial, Block or Lu	ımn Tests													
Axidi, Block of Le	linp rests													
1	Core	а		60	95	16.1	5700	7257	2.22	1.27	2.82	67.7		
2														
3														
4														
5														
6														
7														
8														
9														
10														
											Mean	67.7		

Killmor Ballinasloe Co. Galway Ireland Date: 24th February 2016 Test Report Ref:. STR: 448016

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No.: \$56595

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

Date of Start of Test.:

BH01 - 51006

Unknown

18/1/2016

Sampling Location: Depth Top:264.80 Depth Base:164.93

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Point load test results STR :448016 - Page 2 of 2

Client	Priority Cons	tructio	n Ltc	1									
Sample Number	S56595												
Date Recived	18.1.16												
Sample Ref	BH01 51006												
Key:-													
D	Always dista	nce be	twee	n plate	n conta	act points	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	th perp	end	icular to	loadir	ng directi	on		Р	Load fa	ilure in Kl	N	
	ie core diam	eter fo	r axi	al tests					Is	Uncorre	ected stre	ngth index	
	W =(W1 +	W2)/2 1	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index	
А	W*D minimu	m x-se	ction	nal area	1				F	Size co	rrection fa	actor	
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test perpendicular to fabric			
D*D	= D*D for dia								//		Test parallel to fabric		
	B B lot an	umotra	(u)						- "	1 cot pa			
Sample	Sample	Test		D	W	Р	Α	D*D	ls	F	Is (50)	Approx. Compressive	
no	type	type		mm	mm	KN	=W*D	טט	15	Г	15 (30)	Strength (MPa)	
*	type *	type *	*	*	*	*	_ VV D					Strength (Wil a)	
Axial, Block or Lu	ımp Tests												
, u.i.u.i, 2.00 k 0: 20													
1	Core	а		60	100	12.0	6000	7639	1.57	1.29	2.02	48.5	
2													
3													
4													
5													
6													
7													
8													
9													
10												40.5	
											Mean	48.5	

Priority Construction Ltd 162 Clontarf Road Dublin 3

Dublin 3 Ireland

VAT No: 9D53971I

Date: 15th February 2016 Test Report Ref:. STR: 451474

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Point Load Index of Rock in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received: No Laboratory Ref. No.: S56158

Client Ref. No.:

Date and Time of Sampling:

Date of Receipt at Lab.:

BH05 - 50740

Unknown

08/12/2015

Date of Start of Test.: 15/12/2015
Sampling Location: Depth Top: 37.92 Depth Base: 38.08

Name of Source: Lackagh Quarry SI

Method of Sampling:
Sampled By:
Material Description:
Core
Target Specification:

N/A

RESULTS:

See Attached

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The specimens were perpendicular to the axis of loading with respect to the existing planes of anisotropy.

Nick Dumbarton – Assistant Laboratory Manager

Point load test results STR: 451474 - Page 2 of 2

Client	Priority Cons	structio	n Ltc	i l									
Sample Number	S6158												
Date Recived	8.12.15												
Sample Ref	BH05 50740												
Key : -													
D	Always dista	nce be	twee	n plate	n conta	act point	S		D*D	= 4A/p	i for axial	(a) and irregular block (b) tests	
W	Smallest wid	Ith perp	end	icular to	loadir	ng directi	ion		Р	Load fa	ilure in Kl	N	
	ie core diam	neter fo	r axi	al tests					ls	Uncorre	ected stre	ngth index	
	W =(W1 + 1	W2)/2	for ir	regular	blocks				Is (50)	Point lo	ad streng	th index	
А	W*D minimu								F		rrection fa		
	For axial or i	rregula	r blo	ck test	0.3W <	< D < W			#	Test perpendicular to fabric			
D*D	For axial or irregular block test 0.3W < D < W = D*D for diametral (d) tests							//		Test parallel to fabric			
	- D D loi di		li (u)	10313					"	1 CSt pa		BITC	
					14/	-		D+D			1 (50)		
Sample	Sample	Test		D	W	Р	A =W*D	D*D	ls	F	Is (50)	Approx. Compressive	
no *	type *	type *	*	mm *	mm *	KN *	-VV D					Strength (MPa)	
Axial, Block or Lu	ımn Taete												
Axiai, block of Lt	imp rests												
1	Core	d		80	140	21.0	11200	14260	1.47	1.48	2.18	52.3	
2													
3													
4													
5													
6													
7													
8													
9													
10													
											Mean	52.3	

Porosity / Density Testing

Date: 22nd March 2016

Test Report No: STR: 443026

Priority Construction Ltd 162 Clontarf Road Dublin 3

Ireland

VAT No: 9D53971I Page 1 of 2

LABORATORY TEST REPORT

REQUIREMENTS: To determine the Porosity & Density using saturation and calliper in

accordance with ISRM Part 1: Test 2

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158
Client Ref.: Various

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown
08/12/2015
11/02/2016
Various

Name of Supplier: Lackagh Quarry

Name and Location of Quarry
Sampled By:
Unknown
Client

Method of Sampling: Rock Testing

MAN

Nick Dumbarton – Laboratory Manager

Test Report No: STR 443026 Page 2 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH4 - 48929	0.4	2.69
BH4 - 48936	0.5	2.65
BH5 - 48974	0.4	2.68
BH5 - 50702	0.4	2.69
BH5 - 50730	0.6	2.69

Date: 22nd March 2016

Test Report No: STR: 443115

Priority Construction Ltd 162 Clontarf Road Dublin 3

Ireland

VAT No: 9D53971I Page 1 of 2

LABORATORY TEST REPORT

REQUIREMENTS: To determine the Porosity & Density using saturation and buoyancy in

accordance with ISRM Part 1: Test 3

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56158
Client Ref.: Various

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown
08/12/2015
11/02/2016
Various

Name of Supplier: Lackagh Quarry

Name and Location of Quarry
Sampled By:
Unknown
Client

Method of Sampling: Rock Testing

MAN.

Nick Dumbarton - Laboratory Manager

Test Report No: STR: 443115 Page 2 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m ³)
BH4 - 48914	0.2	2.72
BH4 - 48968	0.4	2.69
BH5 - 48976	0.3	2.65
BH5 - 48999	0.3	2.69
BH5 - 50735	0.4	2.68

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland

VAT No: 9D53971I

Date:17th March 2016 Test Report No: STR: 447826

Page 1 of 2

LABORATORY TEST REPORT

REQUIREMENTS: To determine the Porosity & Density using saturation and buoyancy in

accordance with ISRM Part 1: Test 3

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595
Client Ref.: Various
Date and Time of Sampling: Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

18/1/2016

Various

Name of Supplier: Lackagh Quarry

Name and Location of Quarry
Sampled By:
Unknown
Client

Method of Sampling: Rock Testing

MA

Nick Dumbarton - Laboratory Manager

Test Report No: STR: 447826 Page 1 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m³)
BH01 - 48865	0.5	2.63
BH01 - 48876	1.2	2.70
BH01 - 48889	0.5	2.68
BH01 - 50860	0.2	2.72
BH01 - 50867	0.2	2.63
BH01 - 50881	1.0	2.70
BH01 - 50898	0.7	2.59
BH01 - 50919	0.3	2.63
BH01 - 50928	0.7	2.67
BH01 - 50942	0.4	2.72
BH01 - 50960	0.5	2.71
BH01 - 50967	0.3	2.85
BH01 - 50978	0.3	2.63
BH01 - 50983	0.4	2.65
BH01 - 51009	0.5	2.64

Priority Construction Ltd 162 Clontarf Road Dublin 3 Ireland Date: 17th March 2016 Test Report No: STR: 447828

VAT No: 9D53971I Page 1 of 2

LABORATORY TEST REPORT

REQUIREMENTS: To determine the Porosity & Density using saturation and calliper in

accordance with ISRM Part 1: Test 2

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595
Client Ref.: Various

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

Unknown
18/01/2016
21/02/2016
Various

Name of Supplier: Lackagh Quarry

Name and Location of Quarry
Sampled By:
Unknown
Client

Method of Sampling: Rock Testing

MAN

Nick Dumbarton – Laboratory Manager

Test Report No: STR: 447828 Page 1 of 2

RESULTS:

Sample ref:	Porosity (%)	Dry Density of Rock (Kg/m³)
BH01 - 48866	0.47	2.69
BH01 - 48875	0.58	2.65
BH01 - 48885	0.54	2.70
BH01 - 50861	0.64	2.69
BH01 - 50866	0.57	2.71
BH01 - 50880	0.49	2.71
BH01 - 50897	0.57	2.69
BH01 - 50918	0.76	2.81
BH01 - 50927	0.61	2.75
BH01 - 50941	0.49	2.68
BH01 - 50956	0.54	2.69
BH01 - 50966	0.65	2.69
BH01 - 50977	0.56	2.75
BH01 - 50982	0.64	2.70
BH01 - 51008	0.63	2.65

Polish Stone Value

Priority Construction Ltd Date: 01 March 2016

162 Clontarf Road Test Report Ref: STR 448027

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

To determine the Polished Stone Value (PSV) of aggregate sample in **TEST REQUIREMENTS:**

accordance with BS EN 1097-8: 2009

SAMPLE DETAILS:

Certificate of sampling received: Name of Source: **Lackagh Quarry** No

Laboratory Ref. No: S56595 Method of Sampling: Unknown Client Ref. No: Client **Bulk Sample** Sampled By:

Date and Time of Sampling: Unknown Date of Receipt at Lab: 18/01/2016 Date of Start of Test: 23/02/2016 Sampling Location: Unknown Material Description: **Aggregate**

RESULTS:

Recorded Polished Stone Value

Test Specimen	Test Run 1	(i)	35.3	Mean
		(ii)	35.7	Recorded
	Test Run 2	(iii)	35.0	Value (S)
		(iv)	37.0	= 35.8
Control Stone	Test Run 1	(i)	47.7	Mean
		(ii)	47.3	Recorded
	Test Run 2	(iii)	47.0	Value (C)

46.7

(iv)

Corrected Polished Stone Value: S + 49* - C = 38

Comments

*New Control Stone

Certificate Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

= 47.2

Technical Manager

Slake Durability

Priority Construction Ltd

Date: 29 February 2016

162 Clontarf Road

Test Report Ref: STR 448028

Dublin 3 Ireland

VAT No: 9D53971I

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Slake Durability Index of an aggregate sample in

accordance with ISRM guidelines

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. : Bulk Sample
Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 18/02/2016
Sampling Location: Unknown

Name of Source: Lackagh Quarry

Method of Sampling:

Sampled By:

Material Description:

Unknown
Client
Aggregate

Target Specification: N/A

RESULTS:

Slake Durability Index = 99.4 %

Comments

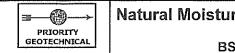
None

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager


Approved by: - Elizaber

Eric Goulden

Technical Manager

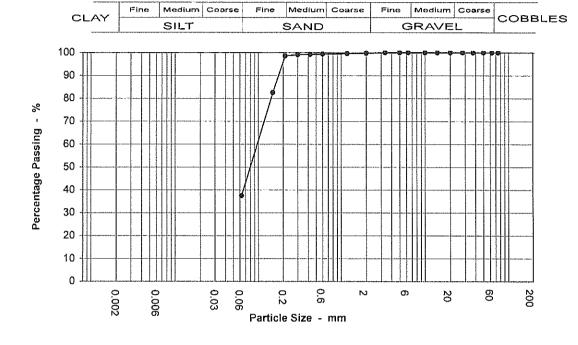
Soil Testing

Natural Moisture Content/Atterberg Limits Summary
BS 1377 : Part 2 : 1990 : Clause 3

Job Ref

Location

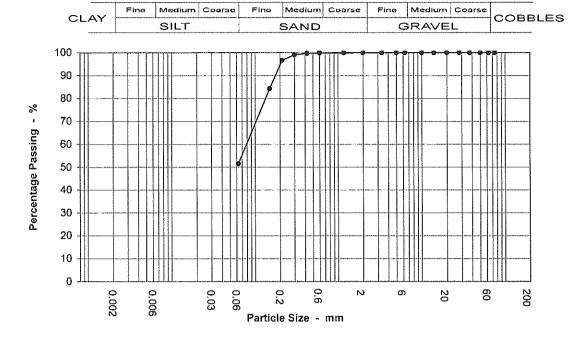
Galway PDL


P16005

Hole ID	Sample		Sample	Sample Description	МС	LL	PL	PI	% Pass 425
BH03	Ref	(m) 13.65	Type B		26				420
BH03		13.73	В			34	NP	NP	100
BH03		19.1	В			29	NP	NP	100
BH03		19.25	В		30				
BH03		19.9	В		30				
BH03		21.3	В		30				
BH03		27.45	В			28	NP	NP	100
BH03		31.2	В		25				
BH03		33.95	В		27				
BH03		38.6	В		36				
BH03		39.25	В			56	44	12	100
BH03		39.8	В		38				
BH03		40.65	В			27	20	7	100
BH03		42.3	В		31				
BH03		47.2	В		32				
BH03		48.2	В			54	43	11	100
BH03		49.3	В		37				
BH03		63.5	В		20				
BH03		64.3	В		29				
BH03		65.5	В		24				
BH03		66.95	В		38				
BH03		68.4	В		37				

Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	мс	LL	PL	ΡI	% Pass 425
BH03		70.4	В		21				
вноз		70.75	В		21				
BH03		71.6	В		25				
BH06		16.6	В		22				
ВН06		16,7	В			38	27	11	100
BH06		18.25	В		28				
BH06		18.65	В			49	38	11	100
BH06		21.45	В		26				
BH06		21.52	В		-	39	30	9	100

= -⊕-→	PARTICLE SIZE DISTRIBUTION	Job Ref	P16005
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	BH03
Location	Galway PDL	Sample No	0
		Depth	14.90 m
Soil Description		Sample type	В

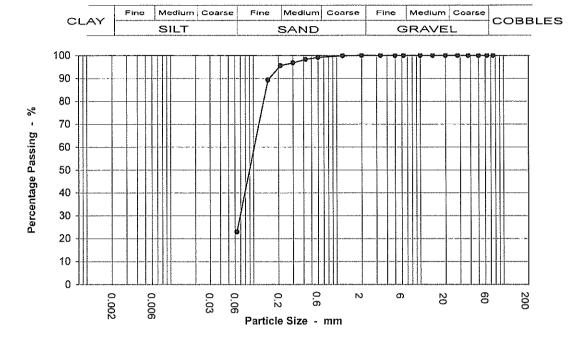

Sievii	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	99		
0.3	99		
0.212	99		
0.15	82		
0.063	38		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause 9.2
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	0.3	
Sand	62.2	
Silt & Clay	37.5	

Grading Analysis	
D100	3.350
D60	0.106
D10	
<u> </u>	
Uniformity Coefficient	N/A

PARTICLE SIZE DISTRIBUTION		Job Ref	P16005
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	BH03
Location	Location Galway PDL		0
			19.00 m
Soil Description		Sample type	В

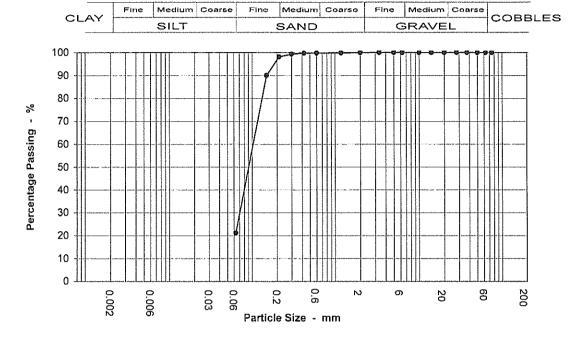

	Sieving		Sedimentation	
	Particle Size mm	% Passing	Particle Size mm	% Passing
	125	100		
	90	100		
	75	100		
***************************************	63	100	·	
	50	100		
	37.5	100		
	28	100		
	20	100		
	14	100		
	10	100		
	6.3	100		
	5	100		
	3.35	100		
	2	100		
	1.18	100		
	0.6	100		
	0.425	100		
	0.3	99		
	0.212	97		
	0.15	84		
	0.063	51		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	48.5	
Silt & Clay	51.5	

Grading Analysis		
D100	2,000	
D60	0.086	
D10		
Uniformity Coefficient	N/A	

PARTICLE SIZE DISTRIBUTION		Job Ref	P16005	
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	ВН03	
Location	Location Galway PDL		0	
			25.50 m	
Soil Description		Sample type	В	

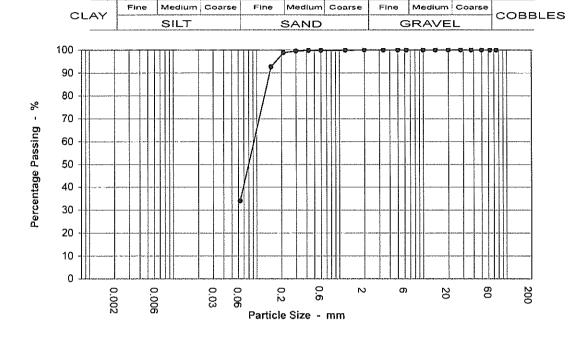

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	98		
0.3	97		
0.212	95		
0.15	89		
0.063	23		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	77.1	
Silt & Clay	22.9	

Grading Anal	ysis
D100	2.000
D60	0.112
D10	
Uniformity Coefficient	N/A

■	Y ANTIOLE SIZE DISTRIBUTION	Job Ref	P16005
PRIORITY GEOTECHNICAL		Borehole / Pit No	BH03
Location	Galway PDL	Sample No	0
		Depth	25.80 m
Soil Description		Sample type	В

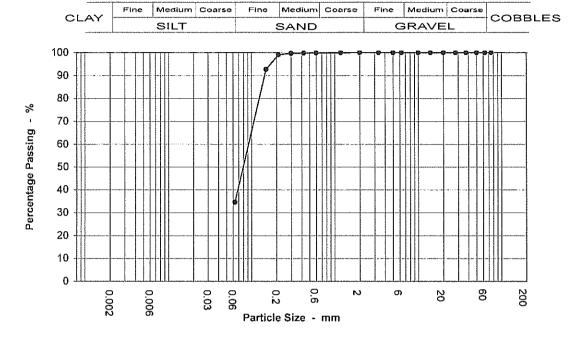

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		i
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	98		
0.15	90		
0.063	21	:	

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause 9.2
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	78.8	
Silt & Clay	21.2	

Grading Ana	lysis
D100	3.350
D60	0,112
D10	
Uniformity Coefficient	N/A

	PARTICLE SIZE DISTRIBUTION	Job Ref	P16005
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	вноз
Location	Galway PDL	Sample No	0
		Depth	26.50 m
Soil Description		Sample type	В

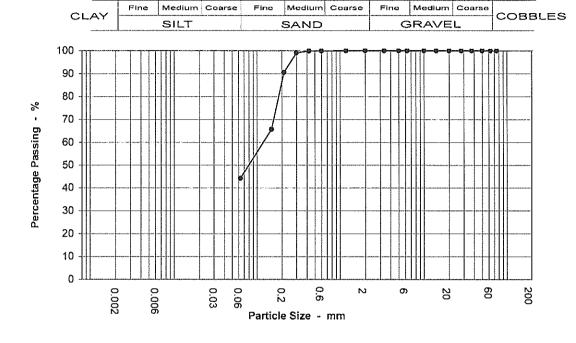

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	99		
0.15	93		
0.063	34		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	66.0	
Silt & Clay	34.0	

Grading Analysis		
D100	2.000	
D60	0.102	
D10		
Uniformity Coefficient	N/A	

■	PARTICLE SIZE DISTRIBUTION		P16005
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	BH03
Location Galway PDL	Galway PDL	Sample No	0
		Depth	26.70 m
Soil Description		Sample type	В

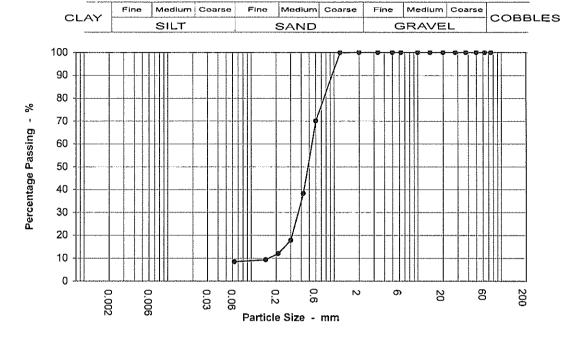

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	99		
0.15	93		
0.063	35		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	65.4	
Silt & Clay	34.6	

Grading Analysis		
D100 2.000		
D60	0.101	
D10		
Uniformity Coefficient	N/A	

■ — ③ —	PARTICLE SIZE DISTRIBUTION	Job Ref	P16005
PRIORITY GEOTECHNICAL BS 1377 : Part 2 : 1990 : Clause 9		Borehole / Pit No	BH03
Location	Galway PDL		0
		Depth	27.55 m
Soil Description		Sample type	В

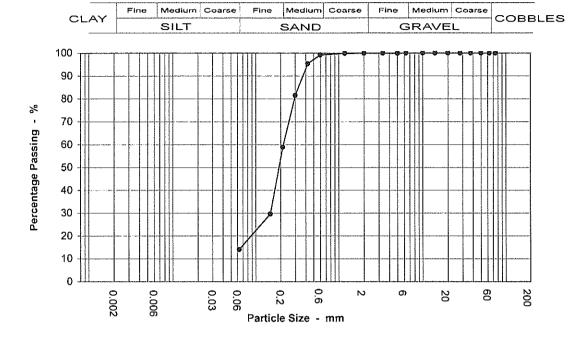

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	99		
0.212	90		
0.15	66		
0.063	44		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	55.8	
Silt & Clay	44.2	

Grading Analysis		
D100 2.000		
D60	0.127	
D10		
Uniformity Coefficient	N/A	

3 @>	PARTICLE SIZE DISTRIBUTION	Job Ref	P16005	
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	BH03	
Location Galway PDL		Sample No	0	
			30.25 m	
Soil Description		Sample type	В	


Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	70		
0.425	38		
0.3	18		
0.212	12		
0.15	9		
0.063	8		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause 9.2	
Sedimentation	N/A	

Sample Proportions						
Cobbles	0.0					
Gravel	0.0					
Sand	91.5					
Silt & Clay	8.4					

Grading Analysis							
D100	3.350						
D60	0.545						
D10	0.165						
Uniformity Coefficient 3							

3 — ∅ -→	PARTICLE SIZE DISTRIBUTION	Job Ref	P16005	
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	ВН03	
Location	Galway PDL	Sample No	0	
		- Depth	36.70 m	
Soil Description		Sample type	В	

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	99		
0.425	95		
0.3	81		
0.212	59		
0.15	30		
0.063	14		

Test Method						
BS 1377 : Part 2 : 1990						
Sieving	Clause 9.2					
Sedimentation	N/A					

Sample Proportions						
Cobbles	0.0					
Gravel	0.1					
Sand	85.8					
Silt & Clay	14.1					

Grading Analysis						
D100	6.300					
D60	0.217					
D10						
Uniformity Coefficient	N/A					

Job Ref	P16005	Sulphate Content as SO4	Total Water Soluble Sulphate % g/L										
		Sulph	GW g/L										
		as SO3	Water Soluble g/L						,	ı			
	:	Sulphate Content as SO3	Total Sulphate %										
d) to		Sulpha	GW g/L										
Value 5.5 & 9.0		<u> </u>	pH Value	9.08	8.93	8.27	7.77	7.5					
& pH lause 5		76	< 2.0 mm										
Sulphate Content & pH Value BS 1377 : Part 3 : 1990 : Clause 5.5 & 9.5	Galway PDL		Sample Description										
			Sample Type	В	В	В	В	В					
			Depth (m)	20.95	27.20	41.20	47.00	63.38					
T + 31	uo		Sample Ref										
E-CONICAL	Location		Hole ID	вноз	вноз	ВН03	вноз	вноз					

Organic Matter Content

BS 1377 : Part 3 : 1990 : Clause 3

Job Ref

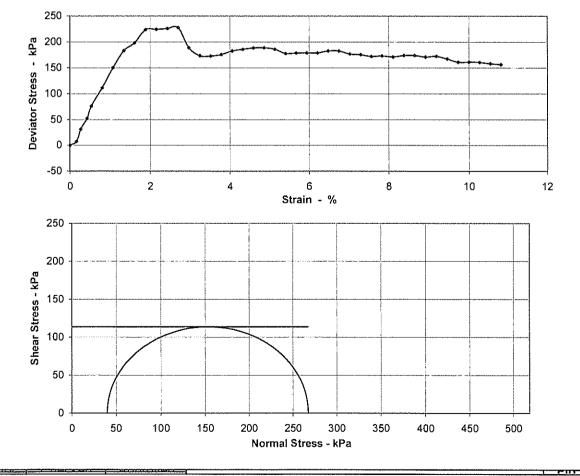
Location

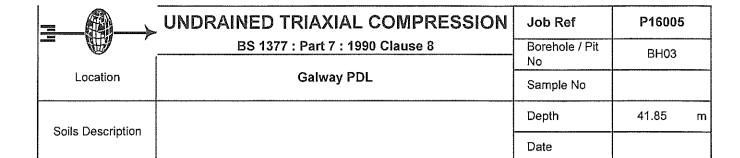
Galway PDL

P16005

Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	% Mass < 2 mm	Organic Matter Content %
BH03		38.95	В		100	8.85
BH03		39.45	В		100	5.63
BH03		42.35	В		100	7.04
BH03		46.20	В		100	15.12
BH03		47.45	В		99.97	6.64
BH03		49.00	В		100	6.49
BH03		63.15	В		98.97	10.22
BH03		63.90	В		100	5.99
BH03		64.90	В		99.3	7.68
BH06		17.13	В		99.51	3.15
BH06		18.95	В		99.5	3.17
BH06		21.75	В		99.93	12.51

	UNDRAINED TRIAXIAL COMPRESSION	Job Ref	P16005
	BS 1377 : Part 7 : 1990 Clause 8	Borehole / Pit	BH03
Location	Galway PDL	No Comple Ne	
	-	Sample No	
Coile Description		Depth	4.15 m
Soils Description		Date	


Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	185.0
Diameter	mm	82.0
Moisture Content	%	7.9
Bulk Density	Mg/m³	2.34
Dry Density	Mg/m³	2,17

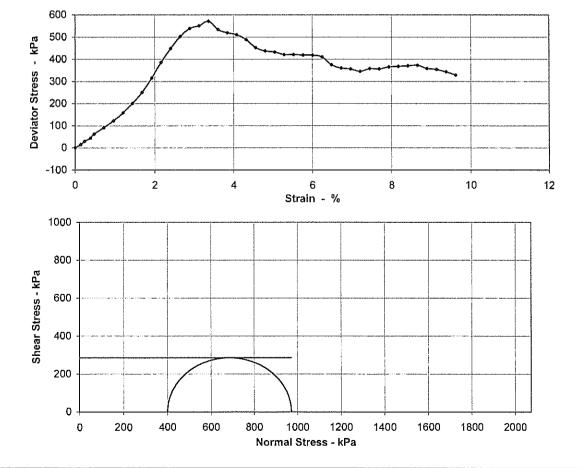

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.33
Rate of Axial Displacement	%/min	1.62
Cell Pressure	kPa	40
Strain at Failure	%	2.7
Maximum Deviator Stress	kPa	227
Shear Strength	kPa	114
Mode of Failure		Brittle

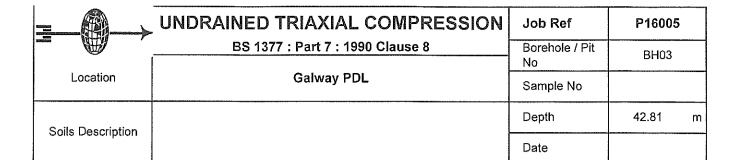
Position and orientation within the original sample

Shear Strength
Parameters
C 114 kPa
Phi 0.0 °

Specimen 1

Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	208.0
Diameter	mm	83.0
Moisture Content	%	41
Bulk Density	Mg/m³	1.78
Dry Density	Mg/m³	1.26

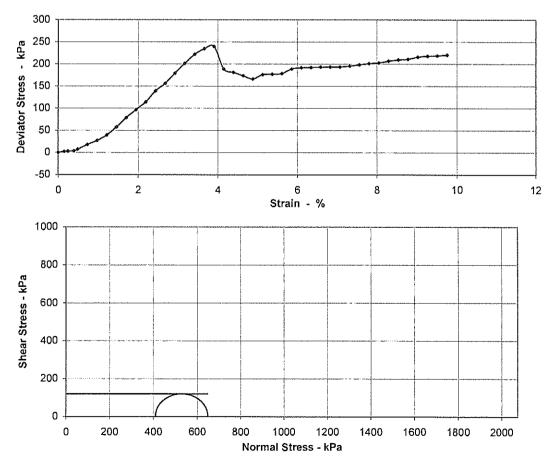

	_		
Test	Dat	l a i	ile
LEST		LCII	

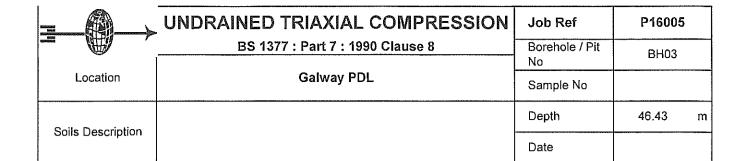

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.40
Rate of Axial Displacement	%/min	1.44
Cell Pressure	k₽a	400
Strain at Failure	%	3.4
Maximum Deviator Stress	kPa	571
Shear Strength	kPa	286
Mode of Failure		Brittle

Position and orientation within the original sample

Shear Strength
Parameters
C 286 kPa
Phi 0.0 °

Specimen 1

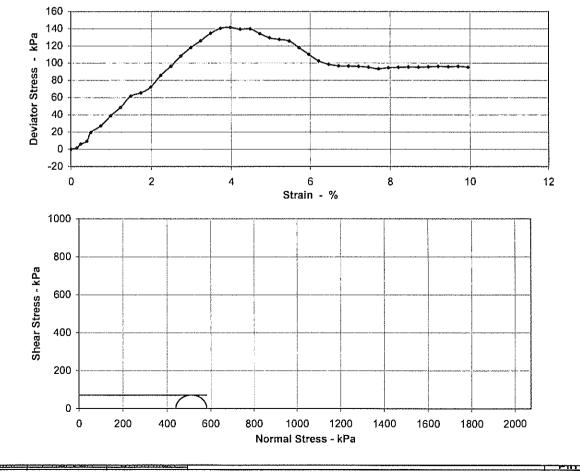

Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	205.0
Diameter	mm	83.0
Moisture Content	%	43
Bulk Density	Mg/m³	1.95
Dry Density	Mg/m³	1.36

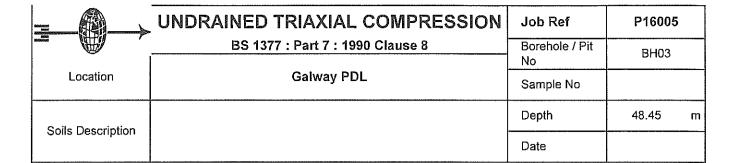

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.45
Rate of Axial Displacement	%/min	1.46
Cell Pressure	kPa	410
Strain at Failure	%	3.9
Maximum Deviator Stress	kPa	239
Shear Strength	kPa	120
Mode of Failure		Brittle

Position and orientation within the original sample

Shear Strength
Parameters
C 120 kPa
Phi 0.0 °

Specimen 1

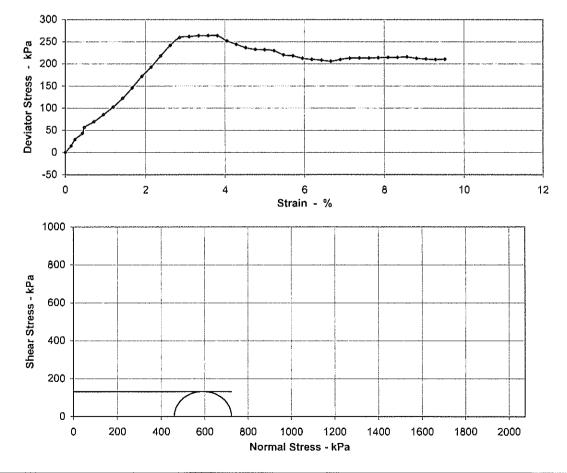

Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	201.0
Diameter	mm	80.0
Moisture Content	%	38
Bulk Density	Mg/m³	1.73
Dry Density	Mg/m³	1.26
THE A DE A 21		

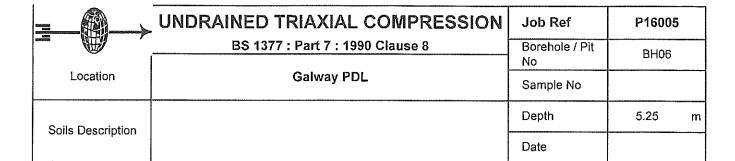

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.48
Rate of Axial Displacement	%/min	1.49
Cell Pressure	kPa	440
Strain at Failure	%	4.0
Maximum Deviator Stress	kPa	141
Shear Strength	kPa	71
Mode of Failure		Compound

Position and orientation within the original sample

Shear Strength
Parameters
C 71 kPa
Phi 0.0 °

Specimen 1

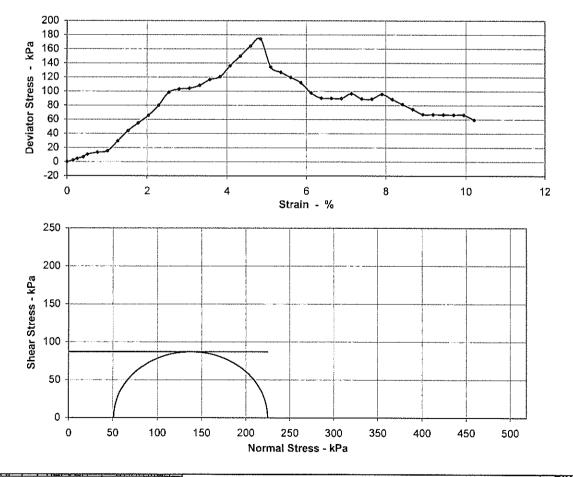

Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	210.0
Diameter	mm	83.0
Moisture Content	%	31
Bulk Density	Mg/m³	1.92
Dry Density	Mg/m³	1.47

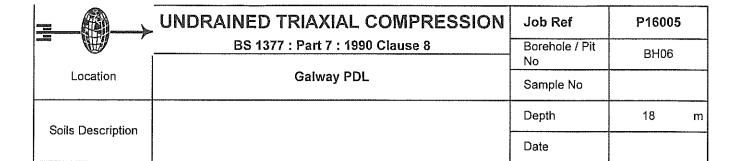

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.44
Rate of Axial Displacement	%/min	1.43
Cell Pressure	kPa	460
Strain at Failure	%	3.8
Maximum Deviator Stress	kPa	264
Shear Strength	kPa	132
Mode of Failure		Brittle

Position and orientation within the original sample

Shear Strength
Parameters
C 132 kPa
Phi 0.0 °

Specimen 1


Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	196.0
Diameter	mm	82.0
Moisture Content	%	6.1
Bulk Density	Mg/m³	2.39
Dry Density	Mg/m³	2.26

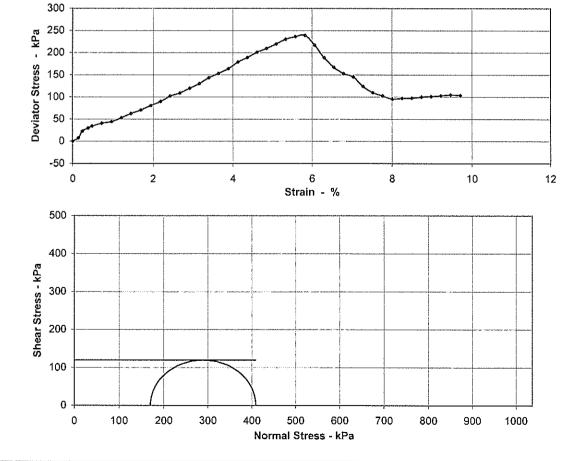

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.55
Rate of Axial Displacement	%/min	1.53
Cell Pressure	kPa	51
Strain at Failure	%	4.8
Maximum Deviator Stress	kPa	174
Shear Strength	kPa	87
Mode of Failure		Brittle

Position and orientation within the original sample

Shear Strength
Parameters
C 87 kPa
Phi 0.0 °

Specimen 1

Sample Details	Specimen	1
Sample Condition		Undisturbed
Height	mm	206.0
Diameter	mm	82.0
Moisture Content	%	30
Bulk Density	Mg/m³	2.09
Dry Density	Mg/m³	1.61


Test Details

Membrane Thickness	mm	0.36
Membrane Correction	kPa	0.65
Rate of Axial Displacement	%/min	1.46
Cell Pressure	kPa	170
Strain at Failure	%	5.8
Maximum Deviator Stress	kPa	239
Shear Strength	kPa	119
Mode of Failure		Brittle

Position and orientation within the original sample

Shear Strength
Parameters
C 119 kPa
Phi 0.0 °

Specimen 1

Contract Number: 30522

Client's Reference: P16005 Report Date: 09-05-2016

Client Priority Geotechnical Limited

Unit 12

Owenacurra Business Park

Midleton Co. Cork.

Contract Title: N6 Galway Bypass

For the attention of: Colette Kelly

Date Received: **07-04-2016**Date Commenced: **07-04-2016**Date Completed: **09-05-2016**

Test Description	Qty
One-dimensional Consolidation 75mm or 50mm diameter specimens (5 days) 1377 : 1990 Part 5 : 3 - * UKAS	7
As 4.01 each additional day 1377: 1990 Part 5: 3	18
Disposal of Samples on Project	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - denotes test included in laboratory scope of accreditation

- denotes test carried out by approved contractor

@ - denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director)

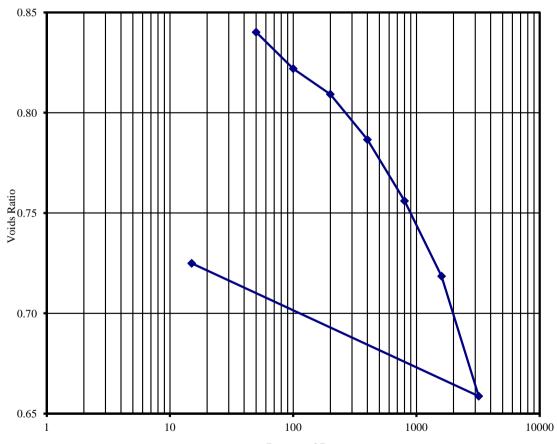
GEO Site & Testing Services Ltd

Unit 4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH03

Depth (m): 41.30 - 41.50

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	33		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.89	0	-	50	0.20	23	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.43	50	-	100	0.20	15	20'C
Voids Ratio:	0.8590	100	-	200	0.070	24	Location of specimen with sample
Degree of saturation:	101.4	200	-	400	0.063	13	top
Height (mm):	19.96	400	-	800	0.043	7.4	Remarks:
Diameter (mm)	50.06	800	-	1600	0.027	9.8	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.022	11	
Assumed		3200	-	15	0.013	20	

Pressure - kPa

GS7L GEO SITE & TESTING SERVICES LTD Matan

Checked By

09/05/16 Date

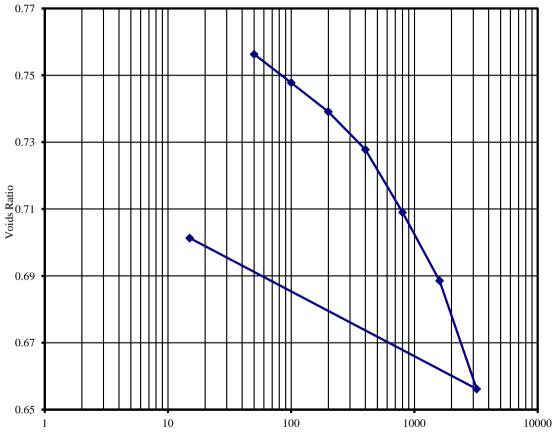
Date

SP Grons

Approved By

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH03

Depth (m): 42.97 - 43.00

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	29		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.93	0	-	50	0.18	31	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.50	50	-	100	0.10	11	20'C
Voids Ratio:	0.7721	100	-	200	0.050	36	Location of specimen with sample
Degree of saturation:	99.6	200	-	400	0.033	11	top
Height (mm):	20.02	400	-	800	0.027	12	Remarks:
Diameter (mm)	50.05	800	-	1600	0.015	25	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.012	10	
Assumed		3200	-	15	0.0086	31	

Pressure - kPa

GS7L GEO SITE & TESTING SERVICES LTD Matan

Checked By

09/05/16

Date

DP Grons

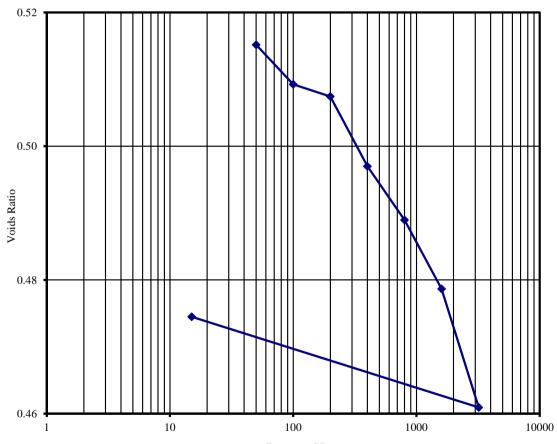
09/05/16

Approved By

Date

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH03

Depth (m): 44.05 - 44.20

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	21		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	2.11	0	-	50	0.025	19	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.75	50	-	100	0.078	0.53	20'C
Voids Ratio:	0.5171	100	-	200	0.012	19	Location of specimen with sample
Degree of saturation:	105.2	200	-	400	0.035	4.8	top
Height (mm):	20.03	400	-	800	0.013	6.2	Remarks:
Diameter (mm)	50	800	-	1600	0.0086	19	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.0075	10	
Assumed		3200	-	15	0.0029	53	

Pressure - kPa

GS7L

GEO SITE & TESTING SERVICES LTD

Matan

Checked By

09/05/16 Date

DP Grons

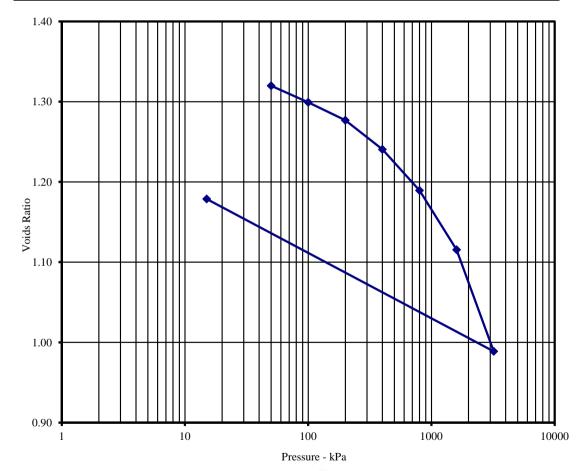
09/05/16

Approved By

Date

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH03

Depth (m): 47.85 - 48.02

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	40		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.59	0	-	50	0.13	18	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.14	50	-	100	0.18	5.6	20'C
Voids Ratio:	1.3346	100	-	200	0.097	18	Location of specimen with sample
Degree of saturation:	79.1	200	-	400	0.080	4.1	top
Height (mm):	20.04	400	-	800	0.057	0.63	Remarks:
Diameter (mm)	50.02	800	-	1600	0.042	15	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.037	9.2	
Assumed		3200	-	15	0.030	2.8	

Matan

Checked By

09/05/16 Date

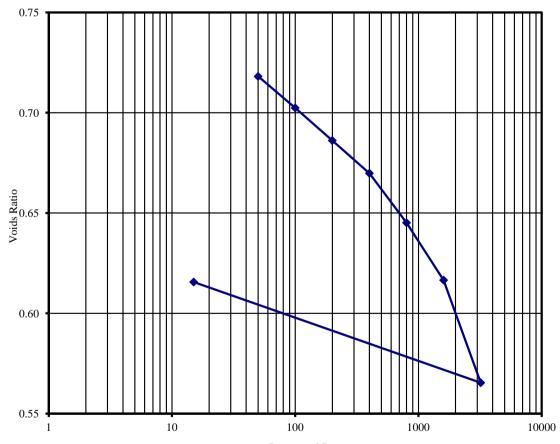
ed By

09/05/16

Approved By Date

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH06

Depth (m): 16.20 - 16.50

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	26		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.95	0	-	50	0.046	17	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.54	50	-	100	0.18	12	20'C
Voids Ratio:	0.7221	100	-	200	0.10	10	Location of specimen with sample
Degree of saturation:	96.9	200	-	400	0.048	16	top
Height (mm):	20.04	400	-	800	0.037	6.2	Remarks:
Diameter (mm)	50.02	800	-	1600	0.022	11	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.020	14	
Assumed		3200	-	15	0.010	10	

Pressure - kPa

GSTL GEO SITE & TESTING SERVICES LTD Matan

Checked By

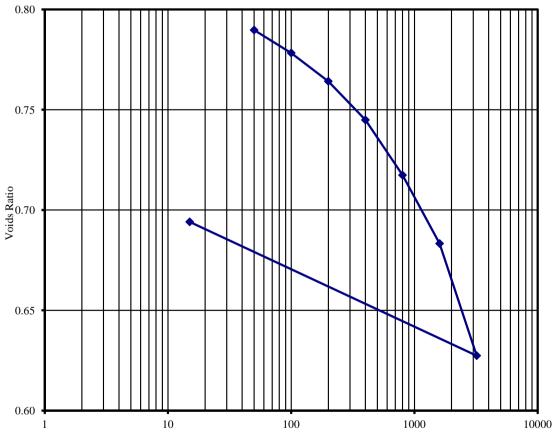
09/05/16 Date

2 P Grons

Approved By

BS1377: Part 5: 1990

Client ref: P16005


Location: N6 Galway Bypass Contract Number: 30522-070416

Hole/Sample Number: BH06

Depth (m): 19.70 - 19.95

Sample Type: B

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	27		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.87	0	-	50	0.084	12	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.47	50	-	100	0.13	12	20'C
Voids Ratio:	0.7973	100	-	200	0.079	27	Location of specimen with sample
Degree of saturation:	90.1	200	-	400	0.055	11	top
Height (mm):	20.13	400	-	800	0.039	4.3	Remarks:
Diameter (mm)	50.01	800	-	1600	0.025	16	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.021	15	
Assumed		3200	-	15	0.013	16	

Pressure - kPa

GSTL GEO SITE & TESTING SERVICES LTD Matan

Checked By

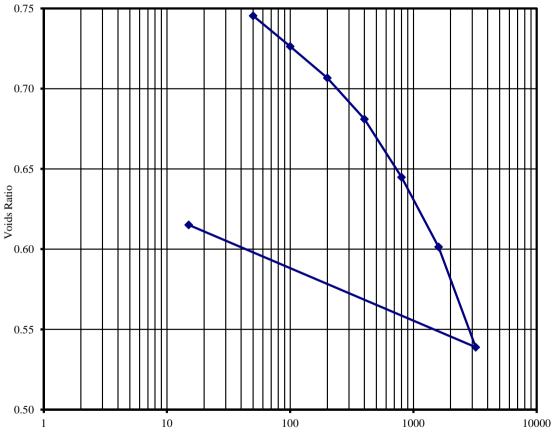
09/05/16 Date

DP Grons

Approved By

BS1377: Part 5: 1990

Client ref: P16005


N6 Galway Bypass Location: **Contract Number:** 30522-070416

Hole/Sample Number: **BH06**

Depth (m): 20.00 20.25

Sample Type: В

Initial Conditions		Pressure Range			Mv	Cv	Method of time fitting used
Moisture Content (%):	30		kPa		m2/MN	m2/yr	Cv Calculated using t90
Bulk Density (Mg/m3):	1.94	0	-	50	0.35	18	Nominal Laboratory Temperature
Dry Density (Mg/m3):	1.49	50	-	100	0.22	15	20'C
Voids Ratio:	0.7762	100	-	200	0.11	27	Location of specimen with sample
Degree of saturation:	101.7	200	-	400	0.075	16	top
Height (mm):	19.92	400	-	800	0.054	7.0	Remarks:
Diameter (mm)	50.02	800	-	1600	0.033	21	
Particle Density (Mg/m3):	2.65	1600	-	3200	0.024	14	
Assumed		3200	-	15	0.016	7.1	

Pressure - kPa

GEO SITE & TESTING SERVICES LTD

Checked By

09/05/16

Date

DP Grons

Approved By

Thin Section / Petrography

Priority Construction Ltd 162 Clontarf Road Dublin 3

Ireland

VAT No: 9D53971I

Date: 16th February 2016 Test Report Ref.: 443031

Page 1 of 8

LABORATORY TEST REPORT

Test Requirements: Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No: BH04 - 48919 Date and Time of Sampling: Unknown Date of Receipt at Lab: 29/1/2016 Date of Start of Test.: 21/1/2016

Sampling Location: Depth Top: 20.05 Depth Base: 20.12

Name of Source: Lackagh Quarry SI

Method of Sampling: Unknown Sampled By: Client Material Description: Core Target Specification: N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton - Assistant Laboratory Manager

Test Report Ref.: 443031 - Page 2 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

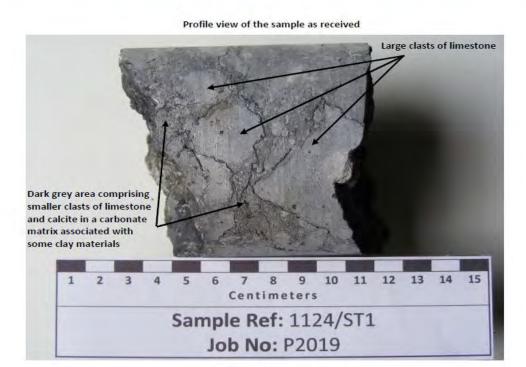
The sample was hard, fine to very coarse grained, anisotropic limestone breccia. The sample exhibited small to very large, medium grey limestone clasts (up to >70mm across), cemented or surrounded by dark grey materials comprising chiefly much smaller limestone and calcite grains, and including some clay materials. The sample did not appear macroporous.

MICROSCOPICAL DESCRIPTION

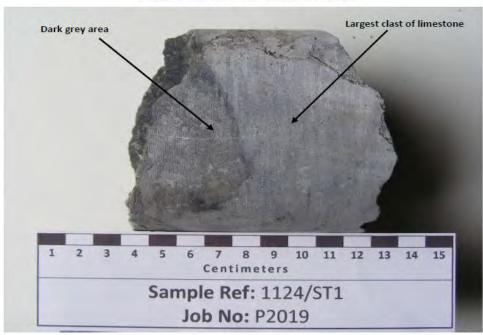
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	94	Up to 4mm	Fresh, angular to well rounded calcium carbonate, including abundant bioclasts. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was nonferroan.	Primary
Clay materials	2-3	<4μm	Very fine grained materials beyond the conclusive resolution of the petrographic microscope, which could be better investigated by scanning electron microscopy (SEM).	Primary
Opaque minerals	1-2	Up to 800μm	Irregular, anhedral to euhedral, fresh to partially oxidised isotropic minerals apparently comprising both framboidal and facetted, probably pyritic materials. Scanning electron microscopy should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Small amorphous by-products of the partial or complete oxidation of opaque minerals.	Secondary

The sample was a fine to very coarse grained LIMESTONE BRECCIA, comprising chiefly calcium carbonate (chiefly as limestone clasts), with a minor proportion of clay materials and trace to minor proportion of opaque minerals.

The individual limestone constituents were typically fine to medium grained. The dark grey areas of the sample comprised chiefly smaller calcium carbonate, with a minor proportion of clay materials. The opaque minerals were unevenly distributed and were frequently observed concentrated in thin, irregular and randomly orientated layers within the dark grey areas of the sample.

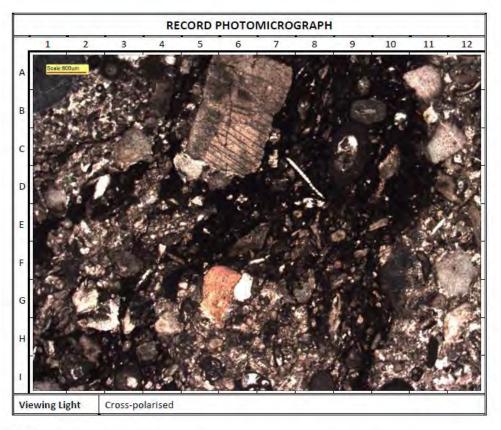

The sample fractured relatively easily along irregular and randomly distributed fracture surfaces within the dark grey areas of the sample during the cutting process to produce the thin section slice. This suggested that the dark grey areas of the sample exhibited frequent planes of weakness, which were probably associated with clay materials and the irregular layers of opaque minerals.

Only rare voids up to 0.4mm were observed. These voids appeared chiefly associated with loss of materials during the sampling process and did not appear interconnected. The void content was visually estimated as being well below 1%. The sample was fresh and exhibited Grade I weathering.



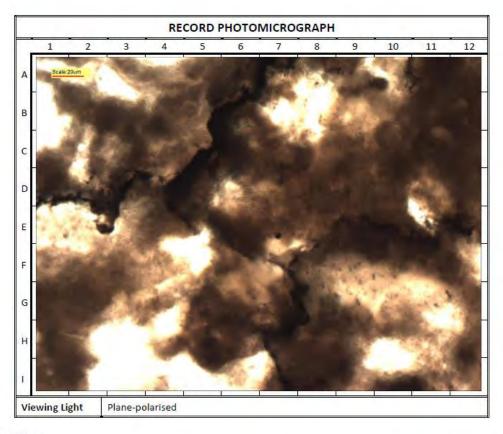
Test Report Ref.: 443031 - Page 3 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007


Another profile view of the sample as received

Test Report Ref.: 443031 - Page 4 of 8

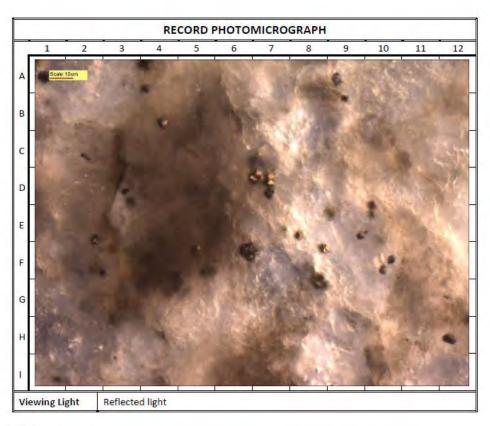
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the limestone, showing limestone and calcite clasts (grey/pale brown/white, pale pink/greyish brown: B2, B6, B9, B12, F2 and H6) and section of the dark grey areas (greyish black: A8, D3 and I2) comprising smaller limestone and calcite clasts/grains and some clay materials.

Test Report Ref.: 443031 - Page 5 of 8

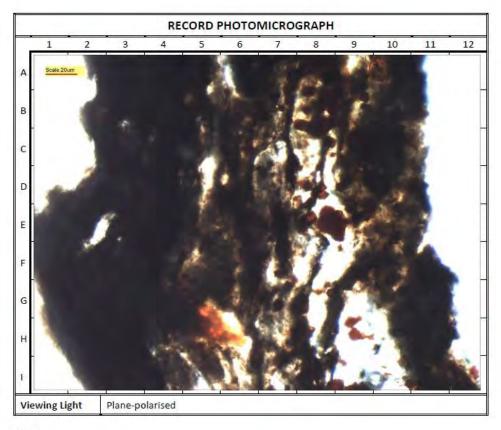
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through a dark grey area of the sample, showing clay materials (brown: A6, A11 and G1) and randomly distributed layers of opaque minerals (black: A7 to D1, D4 to F7 and E12 to I7).

Test Report Ref.: 443031 - Page 6 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through the sample, showing faceted opaque minerals (brass coloured: A9, B4, D7 and F8) and apparent framboidal opaque minerals (black/brass: A1, D7 and F6).

Test Report Ref.: 443031 - Page 7 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

Description

View of a section through the sample, showing opaque minerals (black: A3, A6 and C9) an oxidised opaque minerals (dusky red, reddish orange: A10, E8, H5/6 and H9irregular voids (yellow: B6, D6 and H9).

Test Report Ref.: 443031 - Page 8 of 8

Petrographic Examination Natural Stone– BS EN 12407:2007

Glossary of Terms Used in the Descriptions

I————	
Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600μm-2mm; Extremely thin: <600μm
Cleavage	Extremely wide: >2mm; Very wide: 600μm-2mm; Wide: 200-600μm; Medium: 60-200μm; Close: 20-60μm; Very close: 6-20μm; Extremely close: <6μm.
Cracks	 Fine microcracks (<1μm wide) Microcracks (1-10μm wide) Fine cracks (10-100μm wide) Cracks (100μm-1mm wide) Large cracks (>1mm wide).
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. <i>Mem. Am. Ass. Petrol. Geol.</i> 1, Tulsa.

Priority Construction Ltd 162 Clontarf Road Dublin 3

Ireland

VAT No: 9D53971I

Date: 16th February 2016 Test Report Ref.: 443144

Page 1 of 8

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with

BS EN 12047:2007

Sample details:

Certificate of sampling received: No

Laboratory Ref. No: S56158

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test.:

BH05 - 50728

Unknown

29/1/2016

21/1/2016

Sampling Location: Depth Top: 32.92 Depth Base: 33

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton - Assistant Laboratory Manager

Test Report Ref.: 443144 – Page 2 of 8

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

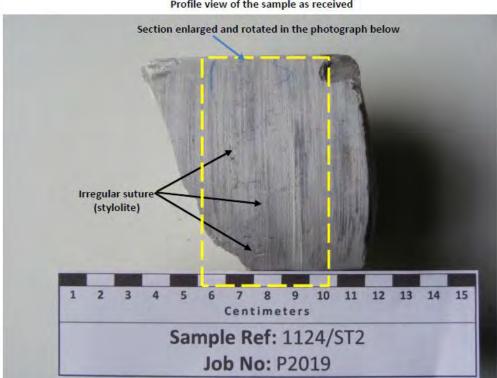
The sample was hard, fine grained, massive, not macroporous limestone. The sample was almost isotropic, except for the presence of a small stylolite (irregular suture) typically <200µm across, running more or less perpendicular to the coring direction. Sporadic small irregular voids up to approximately 1mm across were observed chiefly associated with apparent loss of materials along the stylolite.

MICROSCOPICAL DESCRIPTION

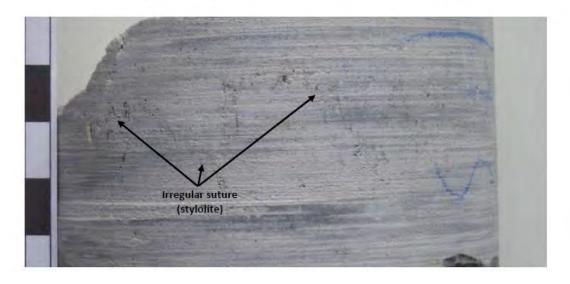
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	99	Up to 800μm	Fresh, angular to well rounded calcium carbonate, including frequent bioclasts. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was nonferroan.	Primary
Opaque minerals	<1	Up to 80μm	Fresh to partially altered, chiefly euhedral isotropic minerals apparently comprising facetted, probably pyritic materials. SEM should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Rare amorphous by-products of the partial or complete oxidation of opaque minerals.	Secondary

The sample was a fine grained LIMESTONE, comprising almost entirely calcium carbonate, with trace amounts of opaque minerals and associated iron oxide compounds.

The sample exhibited stylolite comprising coarser crystals of calcite.

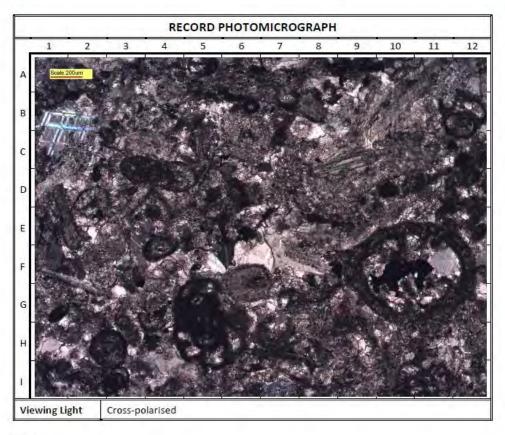

The sporadic voids observed associated with the stylolite did not appeared interconnected. The void content was visually estimated as being well below 1%.

The sample was fresh and exhibited Grade I weathering.


Test Report Ref.: 443144 - Page 3 of 8

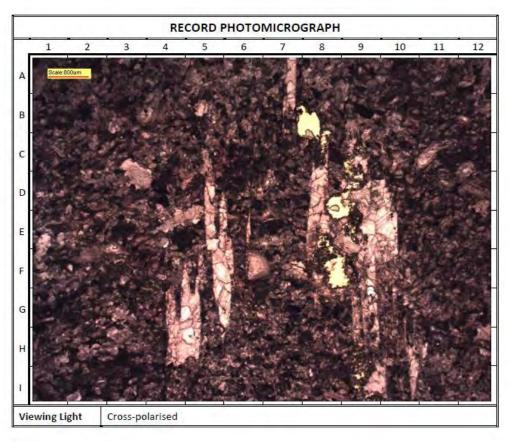
Petrographic Examination Natural Stone- BS EN 12407:2007

Profile view of the sample as received


Closer view of the stylolite with 90 degrees rotation of the photograph

Test Report Ref.: 443144 - Page 4 of 8

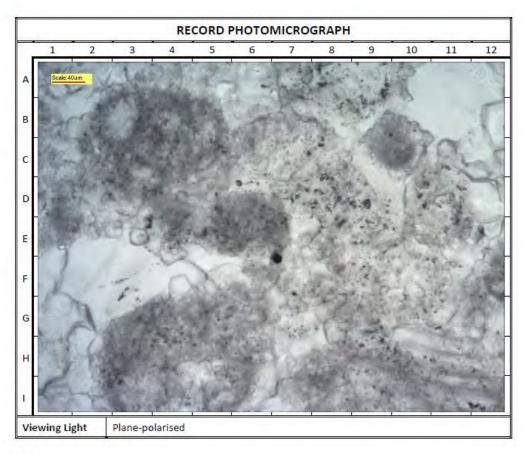
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the limestone particles showing almost entire calcium carbonate (brown, dusky brown, greyish brown, grey/blue/green, pale pink: A9, B/C1, C9, F7 and G5), including bioclasts (dusky brown/greyish black: A5, C/D4, F10 and G5).

Test Report Ref.: 443144 - Page 5 of 8

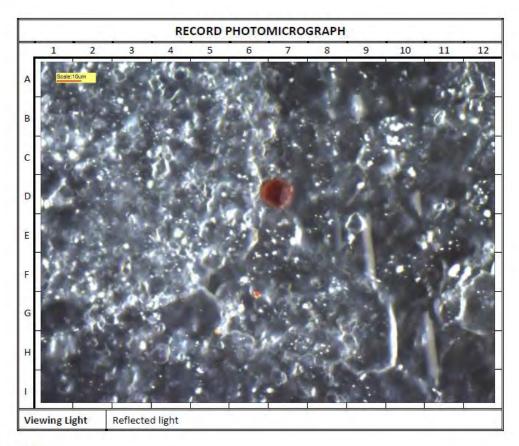
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

Closer view of a section through the limestone, showing sections of the stylolite (pale pink: A7, E5, E9, H4 and I9) and voids (yellow: B7/8, D8, F8 and I9) associated with the stylolite.

Test Report Ref.: 443144 - Page 6 of 8

Petrographic Examination Natural Stone— BS EN 12407:2007


Description

View of a section through the limestone, showing opaque minerals (black: E/F7).

Test Report Ref.: 443144 - Page 7 of 8

Petrographic Examination Natural Stone— BS EN 12407:2007

Description

View of a section through the limestone, showing partially oxidised opaque mineral (red: D7) and iron oxide compounds (reddish orange: G6 and G/H5).

Test Report Ref.: 443144 - Page 8 of 8

Petrographic Examination Natural Stone– BS EN 12407:2007

Glossary of Terms Used in the Descriptions

The state of the s	
Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60μm-2mm; Micro: 2-60μm; Crypto: <2μm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600μm-2mm; Extremely thin: <600μm
Cleavage	Extremely wide: >2mm; Very wide: 600μm-2mm; Wide: 200-600μm; Medium: 60-200μm; Close: 20-60μm; Very close: 6-20μm; Extremely close: <6μm.
Cracks	Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide).
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. <i>Mem. Am. Ass. Petrol. Geol.</i> 1, Tulsa.

Priority Drilling Ltd.

Date: 6th April 2016

Killimor

Test Report Ref.: 447907

Ballinasloe Co Galway Ireland 8D23036i

Page 1 of 8

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test.:

BH01 - 50899

Unknown
18/01/2016

18/03/2016

Sampling Location: Depth Top:113.00 Depth Base:113.08

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton - Assistant Laboratory Manager

Test Report Ref.: 447907 - Page 2 of 8

Petrographic Examination Natural Stone-BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

The sample was a moderately hard, fine to medium grained, massive, not macroporous limestone. The sample was chiefly medium dark grey, but exhibited common, randomly distributed, very light grey to medium grey grains that constituted the medium sized grains of the rock. The sample was almost isotropic, except for the presence of sporadic, randomly orientated small dark grey apparent stylolite (irregular suture) typically $<500\mu$ m across and rare vein $<400\mu$ m. Sporadic unevenly distributed patches of iron oxide compounds were observed.

MICROSCOPICAL DESCRIPTION

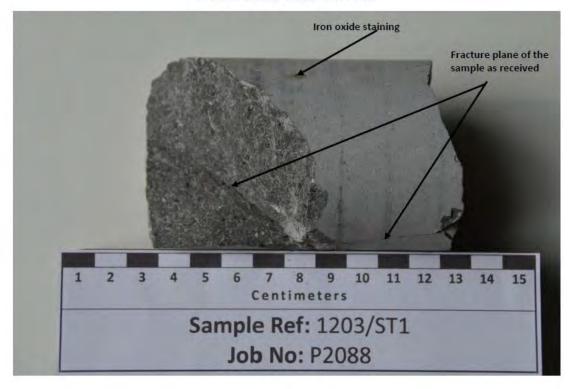
Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	99	Up to 2500μm	Fresh, anhedral to euhedral crystals comprising chiefly microcrystalline calcite (calcite crystals <4µm), with a lesser proportion of sparry calcite (calcite crystals >4µm) and large discrete calcium carbonate grains. The sparry calcite and larger discrete calcium carbonate grains were chiefly observed within randomly distributed, abundant bioclasts and rare calcite veins. The sample was partially stained in accordance with Dickson's method. This suggested that the calcite was predominantly non-ferroan, with a trace amount of possibly ferroan calcite.	Primary
Opaque minerals	<1	Up to 50μm	Fresh, chiefly anhedral isotropic minerals apparently comprising chiefly framboidal, probably pyritic grains. Scanning electron microscopy (SEM) should be used if necessary for better resolution and description of the opaque minerals.	Primary
Iron oxide compounds	<<1	N/A	Rare amorphous by-products of the oxidation of opaque minerals on the surface of the rock core.	Secondary

The sample was a fine to medium grained bioclastic LIMESTONE, comprising almost entirely calcium carbonate, with trace amounts of opaque minerals. No iron oxide compounds was observed in the thin section, suggesting that the patches observed on the hand specimen were superficial oxidation of the opaque minerals exposed to the element.

The sample exhibited sporadic, unevenly distributed and randomly orientated stylolites comprising abundant opaque

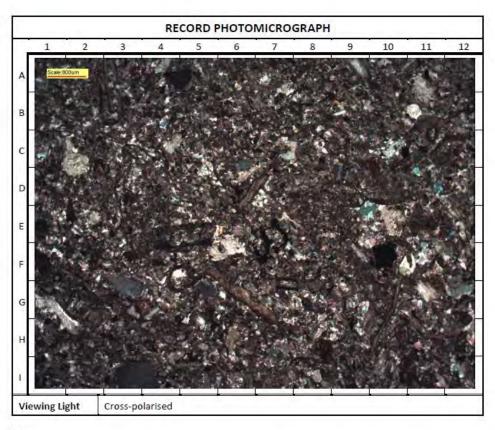
Rare irregular voids up to 100µm across were only observed associated with stylolites.

The void content was visually estimated as being approximately 0%.


The sample was fresh and exhibited Grade I weathering.

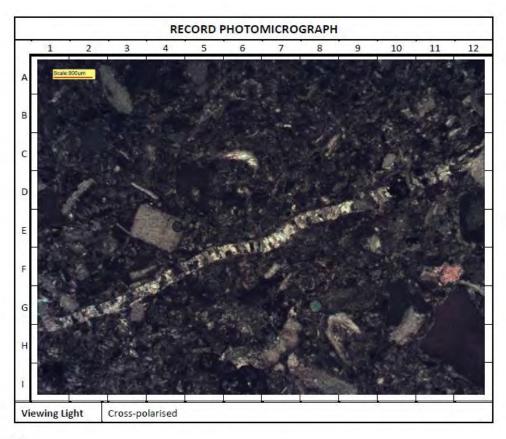
Test Report Ref.: 447907 - Page 3 of 8

Petrographic Examination Natural Stone-BS EN 12407:2007


Profile view of the sample as received

Test Report Ref.: 447907 - Page 4 of 8

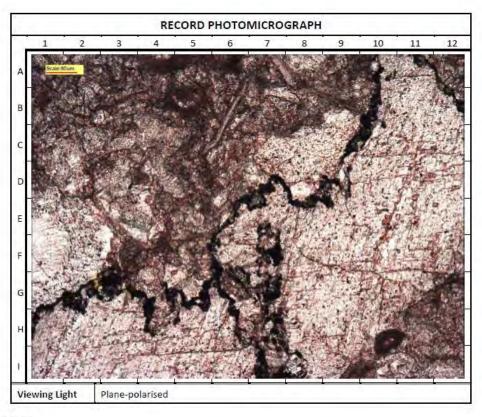
Petrographic Examination Natural Stone- BS EN 12407:2007


Description

View of a section through the sample, showing bioclasts (brown, yellowish grey, pale green: A9, B3, C/D2, D6, G2, G6 and G10), discrete calcite (dark grey (I2/3) cemented by microcrystalline calcite matrix (brown/dusky brown: A8, E8 and H3).

Test Report Ref.: 447907 - Page 5 of 8

Petrographic Examination Natural Stone – BS EN 12407:2007

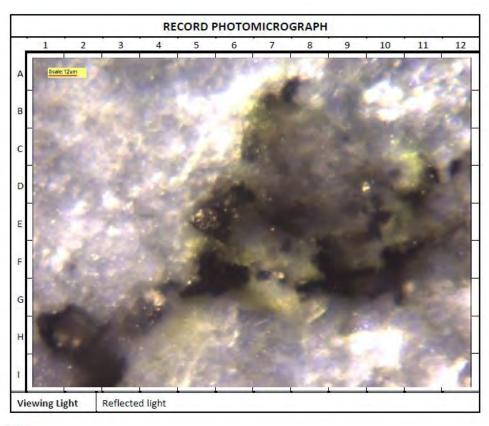

Description

View of a section through the sample, showing calcite vein (C112 to H1)

Test Report Ref.: 447907 - Page 6 of 8

Petrographic Examination Natural Stone – BS EN 12407:2007

Description


View through the stained section of the sample, showing stylolite rich in opaque minerals (black: A10 to H1, A11 to B12 and G6 to I7)

The reddish brown colours (F3) observed throughout the field of view are due to the staining compound used and not due to oxidation.

Test Report Ref.: 447907 - Page 7 of 8

Petrographic Examination Natural Stone – BS EN 12407:2007

Description

Closer view of the section through a stylolite, showing apparent framboidal pyritic grains (black, bras coloured: E5, F6 and G4).

Test Report Ref.: 447907 - Page 8 of 8

Petrographic Examination Natural Stone– BS EN 12407:2007

Glossary of Terms Used in the Descriptions

Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level	
Frequency	Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination	
Hardness	Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.	
Weathering/ alteration	 Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric. 	
Origin	Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed	
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60µm-2mm; Micro: 2-60µm; Crypto: <2µm; Glassy: without visible crystallinity	
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm	
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600μm-2mm; Extremely thin: <600μm	
Cleavage	Extremely wide: >2mm; Very wide: 600μm-2mm; Wide: 200-600μm; Medium: 60-200μm; Close: 20-60μm; Very close: 6-20μm; Extremely close: <6μm.	
Cracks	 Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide). 	
Colour	Description based on geological rock-color chart, produced by Munsell Color, 2009 Revised, 2011 Production.	
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. <i>Mem. Am. Ass. Petrol. Geol.</i> 1, Tulsa.	

Priority Drilling Ltd.

Date: 6th April 2016

Killimor

Test Report Ref.: 447934

Ballinasloe Co Galway Ireland 8D23036i

Page 1 of 9

LABORATORY TEST REPORT

<u>Test Requirements:</u> Petrographic Examination of Natural Stone in accordance with BS EN 12047:2007

Sample details:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref. No:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test.:

BH01 - 50926

Unknown
18/01/2016

18/03/2016

Sampling Location: Depth Top:148.97 Depth Base:149.05

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

COMMENTS/ DEPARTURE FROM SPECIFIED PROCEDURE

The work was carried out by our accredited, competent, sub contracted laboratory.

RESULTS

See Attached

Nick Dumbarton - Assistant Laboratory Manager

Test Report Ref.: 447934 - Page 2 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

HAND SPECIMEN DESCRIPTION

The sample was a moderately hard, fine to very coarse grained, not macroporous limestone. The sample was anisotropic. The sample exhibited medium grey to greyish black variously thick band/layers, unevenly distributed white bioclastic calcite materials up to 8mm across and a large irregular pyritic material up to approximated 2mm across. The sample also exhibited sporadic, randomly distributed and randomly orientated calcite veins up to <200µm across.

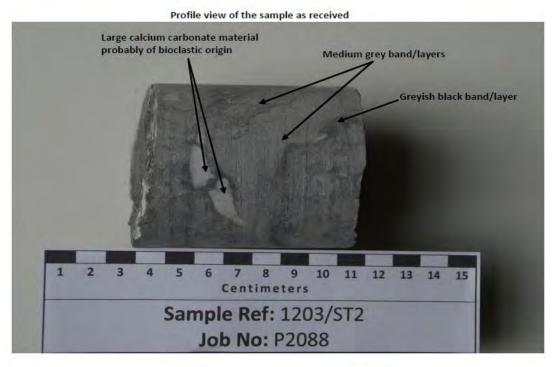
MICROSCOPICAL DESCRIPTION

Constituents ¹	Visual Estimated Proportions ² %	Range of Crystal/Grain Size	Petrographic Details	Origin
Calcite	97	Up to 1600μm	Fresh, anhedral to euhedral crystals comprising significant amounts of both microcrystalline calcite (calcite crystals <4μm) and sparry calcite (calcite crystals >4μm), with minor proportion of discrete calcium carbonate grains that appeared to have replaced bioclasts. The bioclasts chiefly comprised both microcrystalline calcite and sparry calcite. The sample was partially stained in accordance with Dickson's method. The result of the staining process suggests that the calcite was chiefly non-ferroan	Primary
Opaque minerals	1-2	Up to 2000μm	Fresh, chiefly anhedral isotropic minerals apparently comprising almost entirely framboidal, probably pyritic grains. Scanning electron microscopy (SEM) should be used if necessary for better resolution and description of the opaque minerals.	Primary
Clay materials	1-2	<4μm	Very fine grained materials associated with abundant microcrystalline calcite, thus beyond the conclusive resolution of the petrographic microscope. This could be investigated further by scanning electron microscopy (SEM).	Primary

The sample was a fine to very coarse grained bioclastic LIMESTONE, comprising almost entirely calcium carbonate, with trace to minor proportions of opaque minerals, and trace to minor proportions of potentially clay minerals that were beyond the resolution of the petrographic microscope.

The limestone also exhibited abundant intraclasts (apparently reworked limestone fragments probably from nearby sediments).

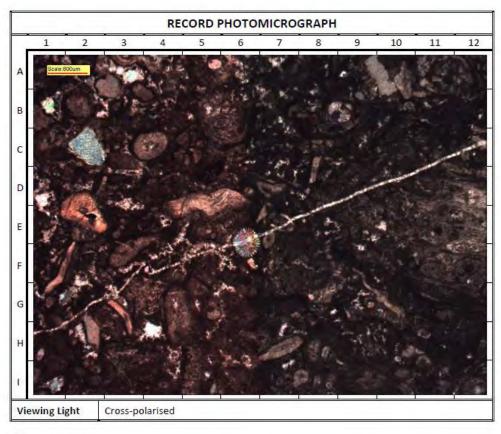
The greyish black bands/layers appeared brecciated as they comprised limestone fragments and discrete calcite grains cemented by very fine grained matrix comprising chiefly microcrystalline calcite, with trace to minor proportions of opaque minerals and possibly trace to minor proportions of clay materials.


No void was observed. The void content was visually estimated as being 0%.

The sample was fresh and exhibited Grade I weathering.

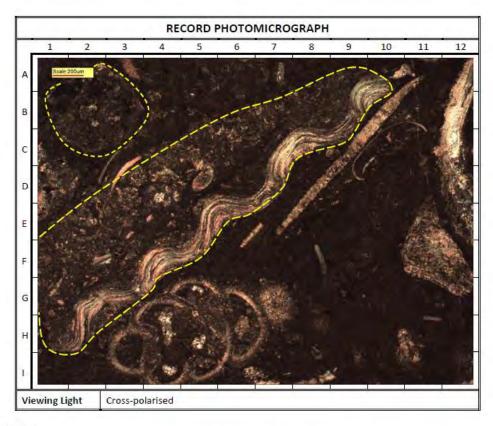
Test Report Ref.: 447934 - Page 3 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007



Test Report Ref.: 447934 - Page 4 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

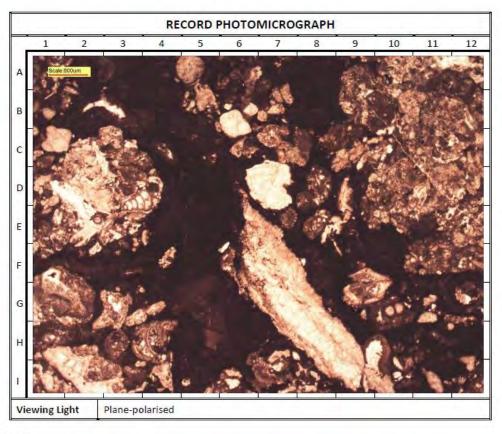

Description

View of a section through a part-stained section of the sample, showing bioclasts (pink, pale ink, light brown, purple/green: A3, A11, B5, D5, E6 and E11) and calcite vein (light brown/pale pink/white: C12 to H1).

Test Report Ref.: 447934 - Page 5 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

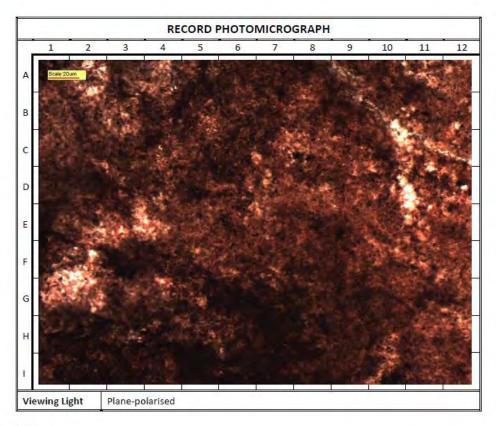
Description


View through a typical medium grey section of the sample, showing bioclasts (pale pink, light brown, pale yellow: D3, D5, D7, D8, D12 and H5) cemented by chiefly microcrystalline calcite (brownish grey: E9).

An apparent intraclasts are highlighted in yellow.

Test Report Ref.: 447934 - Page 6 of 9

Petrographic Examination Natural Stone – BS EN 12407:2007

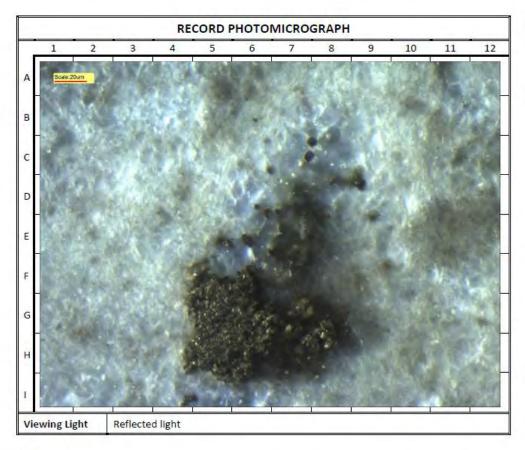

Description

View of a section through a greyish black band/layer, showing apparent limestone fragments (pale pink, light brown, pale yellow: A5, C1, D2, D7, D11, G7 and G9), cemented by very fine grained matrix (dusky brown: A8, E5 and H12).

Test Report Ref.: 447934 - Page 7 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

Description


Closer view through the matrix of the greyish black section of the sample, showing very fine grained materials beyond the conclusive resolution of the petrographic microscope. Opaque minerals appear black (A5 and E6). The remainder of the field of view appear to comprise both microcrystalline calcite and possibly some clay minerals.

The moderate red colour (D9) observed throughout the photomicrograph are due to the staining compound used and not due to oxidation.

Test Report Ref.: 447934 - Page 8 of 9

Petrographic Examination Natural Stone- BS EN 12407:2007

Description

Closer view of the section through the sample, showing framboidal pyritic grains (brass colour: C7 and G5).

Test Report Ref.: 447934 - Page 9 of 9

Petrographic Examination Natural Stone– BS EN 12407:2007

Glossary of Terms Used in the Descriptions

Proportions	Major: constituent present at a level ≥10%; Minor: constituent present at level ≥2% but <10; Trace: constituent present at <2% level
Frequency	Rare – only found by thorough searching Sporadic – only occasionally observed during normal examination Common – easily observed during normal examination Frequent – easily observed with minimal examination Abundant – immediately apparent to initial examination
Hardness	Very soft: can be penetrated easily by a finger Soft: scores with a fingernail Moderately soft: scores using a copper coin Moderately hard: scores easily with a penknife Hard: not easily scored with a penknife Very hard: cannot be scored with a steel point or knife.
Weathering/ alteration	Grade I (Fresh): Unchanged from original state Grade II (Slightly Weathered): Slight discoloration, slight weakening; Grade III (Moderately Weathered): Considerably weakened, penetrative discoloration, large pieces cannot be broken by hand Grade IV (Highly Weathered): large pieces can be broken by hand, does not readily disaggregate (slake) when dry sample immersed in water Grade V (Completely Weathered): considerably weakened, slakes, original texture apparent; Grade VI (Residual Soil) Soil derived by in-situ weathering but retaining none of the original texture or fabric.
Origin	 Primary constituents: Constituents present within the rock at its formation. Secondary constituents: Constituents formed by the alteration of pre-existing primary constituents or introduced from an external source after the rock was formed
Size	Mega: >60mm; Macro: 2-60mm; Meso: 60μm-2mm; Micro: 2-60μm; Crypto: <2μm; Glassy: without visible crystallinity
Bedding/Layering	Thick: >600mm; Medium: 200-600mm; Thin: 60-200mm; Very thin: 20-60mm
Lamination	Thick: 6-20mm; Thin: 2-6mm; Very thin: 600μm-2mm; Extremely thin: <600μm
Cleavage	Extremely wide: >2mm; Very wide: 600μm-2mm; Wide: 200-600μm; Medium: 60-200μm; Close: 20-60μm; Very close: 6-20μm; Extremely close: <6μm.
Cracks	Fine microcracks (<1µm wide) Microcracks (1-10µm wide) Fine cracks (10-100µm wide) Cracks (100µm-1mm wide) Large cracks (>1mm wide).
Colour	Description based on geological rock-color chart, produced by Munsell Color, 2009 Revised, 2011 Production.
Limestone Classification Schemes	Folk, R. L. 1959. Practical petrographic classification of limestones. <i>Bull. Am. Ass. Petro. Geol.</i> 43, 1-38. Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. By W. E. Ham), pp. 108-121. <i>Mem. Am. Ass. Petrol. Geol.</i> 1, Tulsa.

Total Sulphur

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: S56595

Client Ref. No: **BH01 - 48891**

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

18/01/2016

Date of Start of Test:

19/02/2016

Sampling Location: Depth Top:53.80 Depth Base:453.93

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Mathew Sayer

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: **BH01 - 50859**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:65.40 Depth Base:65.50

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: **BH01 - 50879**

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

18/01/2016

Date of Start of Test:

19/02/2016

Sampling Location: Depth Top:91.10 Depth Base:91.20

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: **BH01 - 50929**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:152.97 Depth Base:153.04

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: - Elizaber

Eric Goulden

Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: **BH01 - 50955**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 18/01/2016
Date of Start of Test: 17/02/2016

Sampling Location: Depth Top:193.60 Depth Base:193.68

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: \$56595

Client Ref. No: **BH01 - 50990**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown
18/01/2016
17/02/2016

Sampling Location: Depth Top:235.64 Depth Base:235.73

Name of Source: Lackagh Quarry

Method of Sampling: Unknown Sampled By: Client

Material Description: Rock Testing

Target Specification: N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

Assistant Laboratory Manager

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Trefelin Bangor Gwynedd LL57 4LH T +44 (0)1248 355269 F +44 (0)1248 351563 E postmaster@celtest.com W www.celtest.com

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH04 - 48954**

Date and Time of Sampling: Unknown
Date of Receipt at Lab: 08/12/2015
Date of Start of Test: 21/12/2015

Sampling Location: Depth Top: 31.66 Depth Base: 31.7

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Client

Material Description:

Core

Target Specification:

N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 1

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Total Sulfur Content of an Aggregate Sample

in accordance with BS EN 1744-1: 2009: Clause 11

SAMPLE DETAILS:

Certificate of sampling received: No

Laboratory Ref. No: **\$56158**

Client Ref. No: **BH05 - 50715**

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

Unknown

08/12/2015

21/12/2015

Sampling Location: Depth Top: 29.09 Depth Base: 29.18

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Client

Material Description:

Core

Target Specification:

N/A

RESULTS:

Total Sulfur Content as S (%) = <0.1

95% Confidence limit* <0.06% - <0.14%

Comments / Departure from specified Procedure

Mathew Sayer

*95% Confidence limit is the expanded uncertainty which is the combined uncertainty standard multiplied by a factor (k) of 2

Certificate

Prepared by:-

Approved by: - Elizaber

Eric Goulden

Technical Manager

UCS

Priority Drilling Ltd, Date: 10 March 2016

Killimor, Test Report Ref: STR 447821a

Revision 1

Ballinasloe, Co. Galway,

Ireland

Page 1 of 2

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Uniaxial Compressive Strength in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No:

Client Ref.:

Date and Time of Sampling:

Date of Receipt at Lab:

Date of Start of Test:

No

S56595

Various

Unknown

18/01/2016

Sampling Location: Various

Name of Source: Lackagh Quarry Method of Sampling: Unknown

Sampled By: Client

Material Description: Rock Cores

Target Specification: N/A

RESULTS:

See attached

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Technical Manager

Test Report Ref: STR 447821a - Page 2 of 2

ВН	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH01 48863	60.7	3.5:1	97	N	Strong	0.3
Bh01 48870	60.8	3.5:1	59	N	Strong	0.2
BH01 48873	60.7	3.5:1	73	N	Strong	0.1
BH01 48878	60.7	3:1	100	N	Strong	0.1
BH01 48883	60.7	3:1	69	N	Strong	0.3
BH01 48887	60.7	3:1	83	N	Strong	0.2
BH01 50943	60.8	3:1	76	N	Strong	0.1
BH01 48895	61	3.4:1	138	N	Very Strong	0.3
BH01 48900	60.8	2.5:1	65	N	Strong	0.1
BH01 50863	60.6	1.7:1	104	N	Very Strong	0.2
BH01 50873	60.7	3:1	62	N	Strong	0.2
BH01 50884	60.6	3:1	76	N	Strong	0.2
BH01 50894	60.7	3.4:1	107	N	Very Strong	0.2
BH01 50902	60.7	3:1	104	N	Very Strong	0.1
BH01 50909	60.8	2.1:1	79	N	Strong	0.2
Bh01 50915	60.8	3.1:1	110	N	Very Strong	0.3
Bh01 50924	60.7	1.4:1	100	N	Very Strong	0.2
BH01 50934	60.7	3.1:1	86	N	Strong	0.4
BH01 50938	60.6	3.4:1	83	N	Strong	0.2
BH01 50945	60.8	3.4:1	86	N	Strong	0.2
BH01 50952	60.6	3.2:1	97	N	Strong	0.5
BH01 50958	60.8	3.2:1	114	N	Very Strong	0.3
BH01 50963	60.6	3.1:	132	N	Very Strong	0.2
BH01 50968	60.6	3.3:1	111	N	Very Strong	0.1
BH01 50971	60.5	3.5:1	52	N	Strong	0.3
BH01 50980	60.5	2.8:1	77	N	Strong	0.2
BH01 50986	60.5	3:1	111	N	Very Strong	0.4
BH01 50991	60.6	3.5:1	80	N	Strong	0.2
BH01 50992	60.6	2.3:1	76	N	Strong	0.2
BH01 50994	60.6	3:1	118	N	Very Strong	0.2
BH01 50998	60.7	2.1:1	121	N	Very Strong	0.3
BH01 51002	60.4 Wynedd LL57 4LH	3.3:1	143 +44 (0)1248 351563 E posti	N	Very Strong	0.2

Trefelin Bangor Gwynedd LL57 4LH T +44 (0)1248 355269 F +44 (0)1248 351563 E postmaster@celtest.com W www.celtest.com

BH01 51004	60.4	2.6:	66	N	Strong	0.2
BH01 51007	60.8	2.5:1	83	N	Strong	0.3
BH01 51010	60.6	2.5:1	90	N	Strong	0.3
BH01 51011	60.3	2.9:1	91	N	Strong	0.2

Comments

- 1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.
- 2) Stress Rate: 0.7Mpa/s.

3)	EN ISO 14689-1	1 : 2003 Rock Strength Terms
	Compressive Strength mpa	Term
	<1.0	Extremely Weak
	1 to 5	Very Weak
	5 to 25	Weak
	25 to 50	Meduim Strong
	50 to 100	Strong
	100 to 250	Very Strong
	> 250	Extremely Strong

Dublin 3 Ireland

VAT No: 9D53971I Page 1 of 2

Contract: Lackagh Quarry

LABORATORY TEST REPORT

TEST REQUIREMENTS: To determine the Uniaxial Compressive Strength in accordance with

ISRM Guidelines

SAMPLE DETAILS:

Certificate of sampling received:

Laboratory Ref. No:

Client Ref.:

Various

Date and Time of Sampling:

Unknown

Date of Receipt at Lab:

Date of Start of Test:

Sampling Location:

No

S56158

Various

Unknown

08/12/2015

Various

Name of Source: Lackagh Quarry SI

Method of Sampling:

Sampled By:

Material Description:

Target Specification:

Unknown
Client
Core
N/A

RESULTS:

See attached

Certificate

Prepared by:-

Mathew Sayer

Assistant Laboratory Manager

Approved by: -

Eric Goulden

Technical Manager

Test Report Ref: STR 443020 - Page 2 of 2

вн	Core Diameter (mm)	Height/ Diameter Ratio	Uniaxial compressive strength (MPa)	Mode of Failure	EN ISO 14689-1 Term	Water content (%)
BH04 48908	82	2.6:1	76	N	Strong	0.1
BH04 48912	82.3	1.9:1	86	N	Strong	0.3
BH04 48921	82.3	1.5:1	55	N	Strong	0.1
BH04 48927	82.1	1.6:1	53	N	Strong	0.2
BH04 48931	82.2	2.6:1	111	N	Very Strong	0.1
BH04 48933	82	2.1:1	91	N	Strong	0.2
BH04 48950	82	2.5:1	76	N	Strong	0.2
BH04 48957	82	2:1	78	N	Strong	0.3
BH04 48963	82.2	2.4:1	92	N	Strong	0.1
BH05 48982	82	1.8:1	91	N	Strong	0.2
BH05 48986	81.5	2.6:1	86	N	Strong	0.4
BH05 48991	81.4	2.5:1	94	N	Strong	0.1
BH05 48994	82	1.9:1	72	N	Strong	0.2
BH05 48998	82.2	2.6:1	77	N	Strong	0.2
BH05 50711	78.5	1.8:1	79	N	Strong	0.2
BH05 50729	79	2.5:1	116	N	Very Strong	0.3
BH05 50731	81.4	2.6:1	51	N	Strong	0.1
BH05 50733	81.6	2.1:1	54	N	Strong	0.2
BH05 50737	82	1.5:1	131	N	Very Strong	0.2

Comments

- 1) The uniaxial compressive strength was carried out in accordance with ISRM guidelines.
- 2) Stress Rate: 0.7Mpa/s.

3)	EN ISO 14689-1 : 2003 Rock Strength Terms					
	Compressive Strength mpa	Term				
	<1.0	Extremely Weak				
	1 to 5	Very Weak				
	5 to 25	Weak				
	25 to 50	Meduim Strong				
	50 to 100	Strong				
	100 to 250	Very Strong				
	> 250	Extremely Strong				

Water Tests

Independent Analytical Supplies

Test Report

Lab Report Number:

2165101

Analysis Number:

99A/89470

Customer ID:

BRG.L1

Analysis Type:

Misc. Tests (99A)

Contact Name:

DAVID BLANEY

Delivery By:

An Post

Company Name:

BRG LTD

Sample Card Number:

Address:

8B UNIT 3

AAAQ1194/3

ATHY BUSINESS CAMPUS

Sample Condition:

Acceptable

ATHY

CO KILDARE

Date Sample Received:

15/03/2016

Sample Type:

Ground Water

Date Analysis Commenced:

15/03/2016

Sample Reference: Sample Description: **GROUND WATER** BH-04

Date Certificate Issued:

29/03/2016

Parameter	Method	Result	Unit
Calcium	ICP-MS	82.9	mg/l
Chloride	Konelab Aquakem SOP 2065	32.10	mg/l
Potassium	ICP-MS	0.94	mg/l
Magnesium	ICP-MS	2.50	mg/l
Sodium	ICP-MS	17.1	mg/l
Nitrite	Konelab Aquakem SOP 2059	<0.03	mg/l NO2
Sulphate	Konelab Aquakem SOP 2062	6.26	mg/l SO4

Signed:

w mecall

Date:

29/03/2016

Wendy McCall - Laboratory Manager

* = not INAB Accredited

* = Subcontracted

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This report relates only to the sample submitted. Opinions and interpretations expressed herein are outside the scope of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

Independent Analytical Supplies

Test Report

Lab Report Number: 2165l02 Analysis Number: 99A/89471

Customer ID: BRG.L1 Analysis Type: Misc. Tests (99A)

 Contact Name:
 DAVID BLANEY
 Delivery By:
 An Post

 Company Name:
 BRG LTD
 Sample Card Number:
 AAAQ1194/3

 Address:
 8B UNIT 3
 Sample Condition:
 Acceptable

ATHY BUSINESS CAMPUS

ATHY CO KILDARE

Sample Type:Ground WaterDate Sample Received:15/03/2016Sample Reference:GROUND WATERDate Analysis Commenced:15/03/2016

Sample Description: BH-05 Date Certificate Issued: 29/03/2016

Parameter	Method	Result	Unit
Calcium	ICP-MS	92.6	mg/l
Chloride	Konelab Aquakem SOP 2065	25.38	mg/l
Potassium	ICP-MS	6.26	mg/l
Magnesium	ICP-MS	2.98	mg/l
Sodium	ICP-MS	14.4	mg/l
Nitrite	Konelab Aquakem SOP 2059	0.03	mg/l NO2
Sulphate	Konelab Aquakem SOP 2062	15.41	mg/l SO4

Signed: Date: 29/03/2016

Wendy McCall - Laboratory Manager

* = not INAB Accredited ^ = Subcontracted

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This report relates only to the sample submitted. Opinions and interpretations expressed herein are outside the scope of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

Independent Analytical Supplies

Test Report

99A/89472 **Analysis Number:** Lab Report Number: 2165103

Misc. Tests (99A) **Customer ID:** BRG.L1 **Analysis Type:**

An Post **Contact Name:** DAVID BLANEY **Delivery By:** Company Name: **BRG LTD** Sample Card Number: AAAQ1194/3 8B UNIT 3 Sample Condition: Acceptable Address:

ATHY BUSINESS CAMPUS

ATHY

CO KILDARE

15/03/2016 **Ground Water Date Sample Received:** Sample Type: **GROUND WATER Date Analysis Commenced:** 15/03/2016 Sample Reference:

Date Certificate Issued: 29/03/2016 Sample Description: **BH-06**

Parameter	Method	Result	Unit
Calcium	ICP-MS	430.1	mg/l
Chloride	Konelab Aquakem SOP 2065	152.22	mg/l
Potassium	ICP-MS	39.3	mg/I
Magnesium	ICP-MS	<0.5	mg/l
Sodium	ICP-MS	306.1	mg/l
Nitrite	Konelab Aquakem SOP 2059	1.02	mg/I NO2
Sulphate	Konelab Aquakem SOP 2062	36.32	mg/l SO4

w macall 29/03/2016 Signed: Date:

Wendy McCall - Laboratory Manager

* = not INAB Accredited * = Subcontracted

This report must not be reproduced, except in full, without the prior written approval of IAS Laboratories. This report relates only to the sample submitted. Opinions and interpretations expressed herein are outside the scope of INAB accreditation. Uncertainty of Measurement has been calculated for all INAB accredited tests and is available upon request.

APPENDIX VIII

Monitoring Well Sampling Log

Well Number:BH-04

Project Details

Project No.:	Lackagh	Location (GPS):	530150 728400
Date:	12-3-16	Sampler:	Ronan Doyle

Sample Details

Well No.:	BH-04	Measurement Point:	TOR
Stick Up:		T.O.C Elevation:	
Water Level:	19.65m	Well Depth:	33.06m
Head:	13.41m	Well Diameter:	
Volume in Well (L):		Volume Purged (L):	Pumped for 1 hr
Decon. Procedure:		Bailer Type:	Watterra Pump
Containers Used:			

Field Parameters

Observed Colour:	Brown Tint	Odour:	None
Temperature (°C):	10.5C	Conductivity (µS):	295
pH:	7.47	pHMV:	-58mv ORP=231mv

Comments

DO=0.21mg/l	1.8%	

Ronan Doyle Monitoring Solutions,

Castlebar Road, Ballinrobe, County Mayo.

Monitoring Well Sampling Log

Well Number:BH-05

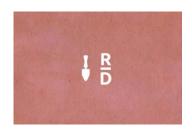
Project Details

Project No.:	Lackagh	Location (GPS):	530186 728378		
Date:	12-3-16	Sampler:	Ronan Doyle		

Sample Details

Well No.: BH-05		Measurement Point:	TOR		
Stick Up:		T.O.C Elevation:			
Water Level: 21.70m		Well Depth: 39.53m			
Head:	17.83m	Well Diameter:			
Volume in Well (L):		Volume Purged (L):	Pumped for 1 hr		
Decon. Procedure:		Bailer Type:	Watterra Pump		
Containers Used:			<u> </u>		

Field Parameters


Observed Colour:	Brown Tint	Odour:	None		
Temperature (°C):	10.5C	Conductivity (µS):	420		
рН:	7.77	pHMV:	-74.8mv		
			ORP=216.9mv		

Comments

DO=0.8mg/l	9.2%		

Ronan Doyle Monitoring Solutions,

Castlebar Road, Ballinrobe, County Mayo.

Monitoring Well Sampling Log

Well Number:BH-06

Project Details

Project No.:	Lackagh	Location (GPS):	530125 728383
Date:	12-3-16	Sampler:	Ronan Doyle

Sample Details

Well No.:	Vell No.: BH-06		TOR		
Stick Up:		T.O.C Elevation:			
Water Level: 4.02m		Well Depth: 7.48m			
Head:	3.46m	Well Diameter:			
Volume in Well (L):		Volume Purged (L):	Pumped for 30min		
Decon. Procedure:		Bailer Type:	Watterra Pump		
Containers Used:			<u> </u>		

Field Parameters

Observed Colour:	Milky brown	Odour:	None
Temperature (°C):	9.8C	Conductivity (µS):	6187
pH:	12.53	pHMV:	-333mv
			ORP=51.7mv

Comments

DO=0.8mg/l	9.4%			

Ronan Doyle Monitoring Solutions,

Castlebar Road, Ballinrobe, County Mayo.

APPENDIX IX

Borehole IDBH5Water Level Start19.45mWater volume inserted215 ltrs

Time (min)	Water Level (m)
1	18.1
1.5	18.52
2	18.82
2.5	19
3	19.14
3.5	19.22
4	19.26
4.5	19.29
5	19.31
5.5	19.32
6	19.33
8	19.35
11	19.38
14	19.39
18	19.4
22	19.405
26	19.41
30	19.41
34	19.415
40	19.42

Borehole IDBH5Water Level Start19.42mWater volume inserted1000 ltrs

Time (min)	Water Level (m)	Comments
1	17.62	
1.5	18.22	
2	18.51	
2.5	18.74	
3	18.93	
3.5	19.04	
4	19.11	
4.5	19.17	
5	19.21	
5.5	19.24	
6	19.26	
6.5	19.28	
7.5	19.29	
9	19.31	
12	19.33	
14	19.335	
17	19.34	
20	19.345	
24	19.345	
30	19.35	
40	19.34	Could feel material in the hole
		test stopped - driller reports
		clearing clay after test in oreder
		to install piezometer.

APPENDIX X

BH04 - F Depth	Packer Test	18/12/15			Water Depth	Start 16	5.8m F i	inish 1	6.8m		→						
Тор	Bottom	Midpoi	nt Packer Pressure (psi)	Pressure (psi)	Flow (litres)	1	2	3	4	5	6	7	8	9	10		
	28 3	30	29 17	5 49) [59	113	168	225	282	343	399	456		579	Total	
						59	57	56	56		57	57	57		58	I/m	Unable to continue at
	24 2	26	25 17	5 50)	18.5	35	52	70		103	121	138		174	Total	
						19	18	17	18		17	17	17		17	I/m	
				65	5	29	58	87	117	147	176	207	236		297	Total	
				-	. ₩	29	29	29	29		29	30	30		30	I/m	
				84	ļ	44	89	134	179		270	316	363		456	Total	
				65		44	45	45	45		45	45	45		46	I/m	
				65)	32	73	113	152	193	232	273	313		395	Total	
						32	37	38	38		39	39	39		40	I/m	
				50)	34	67 34	101 34	135 34		202 34	236 34	270 34	303 34	337 34	Total I/m	
	21 2	!3	22 17	5 40	1	60	120	179	237	296	355	414	473		591	Total	
·	21 2	.5	22 17	3 40	,	60	60	60	59		59	59	59		59	I/m	
				50	1	67	134	200	266	331	397	464	530		662	Total	
				30	,	67	67	67	67	66	66	66	66		66	I/m	Unable to continue at
	18 2	20	19 16	60 40)	20	42	66	91	115	140	164	189		240	•	
			10			20	21	22	23	23	23	23	24		24	I/m	
				60)	31	64	96	128	160	192	225	257		322	Total	
						31	32	32	32	32	32	32	32		32	I/m	
				80)	37	75	113	152	190	228	267	306	345	383	, Total	
						37	38	38	38	38	38	38	38	38	38	I/m	
				60)	33	66	99	132	165	198	231	264	297	328	Total	
						33	33	33	33	33	33	33	33	33	33	I/m	
				40)	25	50	75	101	126	150	175	200		249	Total	
						25	25	25	25	25	25	25	25	25	25	I/m	

BH05 - Packer Test 6/1/16 Water Depth Start 19.26m Finish 19.2

Depth

Depth						Time minu	Fime minutes ————————————————————————————————————								
Тор	Botto	m Mi	idpoint	Packer Pressure (psi)	Pressure (psi) Flow (litre	es) 1	2	3	4	5	6	7	8	9	10
3	6	38	37	160	30	58.9	117.1	176.1	234.4	292.9	350.1	408.7	466.7	524.9	581.7
						59	59	59			58	58	58	58	58
					45	70.1	139.9	209.1	279.1	348.7	417.9	485.1	554.6	620.5	686.1
						70	70	70	70	70	70	69	69	69	69
					60	76.8	153.7	231.2			461.5	537.7	613.7	691.6	768.4
						77	77	77	76	77	77	77	77	77	77
					45	73	145.7	212.8		351.5	421.4	493.3	564.4	634.6	705.9
						73	73	71	70		70	70	71	71	71
					30	64.2	128.6	192.7	256.3		383.6	448.5	513.7	576.7	641.5
						59	59	59			58	58	58	58	58
3	0	32	31	175	30	54.2	110.3	166.4			335.7	392.4	448.1	505.2	561.7
						54	55	55			56	56	56	56	56
					45	67.3	135.1	204.1	273.5		411.7	481.2	530.4	619.3	688.1
						67	68	68			69	69	66	69	69
					60	78.7	155.8	234.8		390.1	468.4	546.7	633.5	701.3	779.4
						79	78	78			78	78	79	78	78
					45	69.7	139.7	209.6			414.5	481.7	550.7	621.8	693
						70	70	70			69	69	69	69	69
					30	61.1	122.4	184.7	247.5		372.5	435.1	498.3	563.5	626.7
						61	61	62			62	62	62	63	63
24	4	27	25.5	175	30	54.1	111.4	166.5	222.3		332.4	387.4	462.1	497.1	551.7
						54	56	56			55	55	58	55	55
					45	67.1	135.4	200.4			402.1	468.3	535.3	602.7	667.1
						67	68	67			67	67	67	67	67
					60	77.3	153.7	231.2	308.9	385.7	463.7	540.1	617.5	695	772.6
					4.5	77 65.6	77 130.5	77 196.3	77 261.1	77 326.7	77 391.6	77 457.5	77 512.9	77 587.2	77 652.5
					45	66	65	196.3			391.6	457.5 65	64	65	
					20		112.5	167.7	223.5		335.2		446	501.7	65 557.1
20					30	56.9 57	56	56			56	390.1 56	56	501.7	557.1
	.0	23	21.5	175	30	54.2	108.5	162			324.5	378	421.7	480	539
2	.0	25	21.5	1/5	30	54.2	54	54			54.5	54	53	53	54
					45	65.6	131.8	197.3			394.5	459.8	524.7	590.3	655.7
					43	66	66	66			66	459.8	66	66	66
					60	77.1	154.1	230.4			459.7	536.2	611.9	688.5	764.1
					00	77.1	77	77	77		77	77	76	77	764.1
					45	67.7	135.2	203.1	271.4		403.3	468.2	530.7	592.8	656.7
					75	68	68	68			403.3	67	66	66	66
					30	57.7	115.4	173.2			342.9	399.1	455.5	512.5	567.1
					30	58	58	58			57	57	57	57	57
						36	36	50	38	37	37	37	57	57	37

Total I/m Total l/m Total I/m

APPENDIX XI

BH3 BH4 BH5 BH6 Elavation 26.256 32.167 34.138 30.799

Date	BH3 bgl	BH3 aod	BH4 bgl	BH4 aod	BH5 bgl	BH5 aod	BH6 bgl	BH6 aod	Comments
08/11/2015					1.31	32.83			Hole at deth of 3.15m
09/11/2015					Dry				Hole at deth of 7.4m
12/11/2015			5.34	26.827					Morning
12/11/2015			Dry						Evening
13/11/2015			17.46	14.707					Rods in hole
13/11/2015	0.65	25.606							Hole at 5.3m. Rods in Hole
16/11/2015	0.11	26.146							Hole at 5.3m. Rods in Hole
17/11/2015	7.51	18.746							Hole at 25.2m. Rods in Hole, Casing to 15m
18/11/2015	6.5	19.756							Hole at 25.2m. Rods in Hole, Casing to 15m
18/11/2015			15.76	16.407					Rods to EOH 35.0m
18/11/2015					17.69	16.45			Rods to EOH 40.3m
21/11/2015	7.5	18.756							Hole at 25.2m. Rods in Hole, Casing to 21m
21/11/2015			17.52	14.647					Rods to EOH 35.0m
21/11/2015					19.5	14.64			Rods to EOH 40.3m
23/11/2015	9	17.256							Hole at 50m. Rods in Hole, Casing to 21m
23/11/2015			18.79	13.377					Rods to EOH 35.0m
23/11/2015					20.56	13.58			Rods to EOH 40.3m
24/11/2015	8.5	17.756							Hole at 57.15m. Rods in Hole, Casing to 21m
24/11/2015			18.84	13.327					Rods to EOH 35.0m
24/11/2015					20.58	13.56			Rods to EOH 40.3m
25/11/2015	12	14.256							Hole at 65.78m. Rods in Hole, Casing to 21m
25/11/2015			18.92	13.247					Rods to EOH 35.0m
25/11/2015					20.72	13.42			Rods to EOH 40.3m
26/11/2015	13.21	13.046							Hole at 79.54m. Rods in Hole, Casing to 50m
26/11/2015			19.04	13.127					Rods to EOH 35.0m
26/11/2015					20.86	13.28			Rods to EOH 40.3m
02/12/2015	12.38	13.876							Hole at 104.95m. Rods in Hole, Casing to 50m
02/12/2015			16.02	16.147					Rods to EOH 35.0m
02/12/2015					17.77	16.37			Rods to EOH 40.3m

08/12/2015	16.14	16.027					Rods to EOH 35.0m
	10.14	10.027	47.22	16.01			
09/12/2015			17.33	16.81			Rods to EOH 40.3m
10/12/2015	15.47	16.697					Rods to EOH 35.0m
10/12/2015			16.98	17.16			Rods to EOH 40.3m
11/12/2015	17.56	14.607					Rods to EOH 35.0m
11/12/2015			16.99	17.15			Rods to EOH 40.3m
14/12/2015	15.65	16.517					Rods to EOH 35.0m
14/12/2015			15.49	18.65			Rods to EOH 40.3m
15/12/2015	16.48	15.687					Rods to EOH 35.0m
15/12/2015			15.51	18.63			Rods to EOH 40.3m
15/12/2015					15.6	15.199	Hole at deth of 45m Rods in hole
17/12/2015	16.87	15.297					Rods to EOH 35.0m
17/12/2015			15.58	18.56			Rods to EOH 40.3m
04/01/2016					2.81	27.989	Piezometer Installed
04/01/2016			14.46	19.68			Rods to EOH 40.3m
05/01/2016					2.83	27.969	Piezometer Installed
05/01/2016			14.68	19.46			Rods to EOH 40.3m
05/01/2016	17.88	14.287					Rods out of hole
06/01/2016			19.45	14.69			Rods out of hole
08/01/2016	16.46	15.707			3.39	27.409	Piezometer Installed
11/01/2016	16.43	15.737	17.48	16.658	3.05	27.749	Piezometer Installed
11/03/2016	18.96	13.207	20.86	13.278	3.59	27.209	Piezometer Installed

aod - Above Ordnance Datum (Sea Level)

Appendix A.9.1.6

Phase 3 Contract 3, N6 Galway City Transport Project Phase 3 Ground Investigation Contract 3, November to December 2016

Our Ref: JMS/Rp/P16185 + attachments (*.pdf)

09th May, 2017

Messrs. ARUP

Corporate House,

City East Business Park,

Ballybrit,

Galway,

H91K5YD.

Re: N6 Galway City Transport Project (GCTP) Phase 3 Contract 3 – Ground Investigation, Factual report.

Introduction

In November 2016, Priority Geotechnical were requested by Arup acting as Employer's Representative on behalf of Galway County Council, to undertake a ground investigation around the east of Galway City, with the majority in Ballybrit, Co. Galway, adjacent to the Galway Racecourse as part of the phase 3 contract 3 – ground investigation. The site works were carried out on private property. Invasive works were primarily in fields with two locations in a paved area.

Scope

The scope of the ground investigation, which was specified by Arup, comprised of:

- 1No. Cable percussion borehole;
- 3No. Rotary boreholes (5no. completed);
- 11No. Soakaway tests in accordance with BRE Digest 365 (17no. completed);
- 4No. Trial pits (5no. completed);
- 1No. 12m deep rotary pumping well;
- In situ testing, including Standard Penetration Tests;

P16185_F01 1 of 8

- Surface geophysics survey (2D resistivity and seismic refraction);
- Crack monitoring;
- Groundwater monitoring;
- All associated sampling;
- Associated lab testing and
- Factual reporting.

Objectives

The purpose of the site investigation was to provide information on the soil and rock ground conditions, groundwater levels and karst activity along the proposed route alignment.

This factual report presents the fieldworks records and data obtained with regard to the ground investigation for the N6 GCTP phase 3 contract 3 - Ground Investigation and should be read in conjunction with the exploratory and photographic records and laboratory test data accompanying this report (attached).

Site Works

This investigation was carried out in accordance with Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards BS 5930 (2015) Code of Practice for Site Investigation and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, *in situ* Tests Parts 1 to 9).

The fieldworks were undertaken between the 2th November and the 22nd December, 2017 under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, attached herein.

Cable Percussion Boreholes

A single (1) cable percussion borehole (BH03-62) was drilled to a depth of 1.90m below existing ground level (bgl) using PGL's Dando 2000 rig. The records are attached, herein.

P16185_F01 2 of 8

Rotary boreholes

Five (5) rotary boreholes (RC03-60, RC03-61, RC03-62, RC03-63 and RC03-64) were drilled to depths between 8.0m bgl and 30.0m bgl using PGL's Deltabase 520, 6t rotary rig. The records are attached, herein.

A single (1) 200mm dia. pumping well (PW01) was drilled to a depth of 12.0m bgl by Dempsey Drilling on behalf of PGL.

Trial pits

A total of five (5) number trial pit excavations (TP03-19, TP03-50, TP03-51, TP03-52 and TP03-53) were excavated to depths of 0.8m below existing ground level (bgl) to 4.0m bgl using a 14t tracked excavator. Trial pits terminated above the scheduled depth of 4.5m bgl for a variety of reasons outlined on the relevant exploratory records attached, herein.

Soakaway Tests

A total of seventeen (17) number infiltration/ soakaway tests were carried out in in general accordance with BRE Digest 365, Soakaway Design (2003/ 2007). The data from the testing is presented accompanying the relevant exploratory records, SW03-03, SW03-04, SW03-05, SW03-06, SW03-07, SW03-08, SW03-09, SW03-10, SW03-11, SW03-12, SW03-13, SW03-14, SW03-15, SW03-16, SW03-17, SW03-18, and SW03-19.

Sampling

A total of fifty seven (57) bulk disturbed samples (B), thirty two (32) small disturbed samples (D) and rotary core were recovered from the exploratory holes in accordance with Geotechnical Investigation and Sampling – Sampling Methods and Groundwater Measurements (EN ISO 22475-1:2006).

Survey and Drawings

Upon completion of the fieldworks, the 'as built' exploration locations were surveyed using Trimble 5700/5800 GPS equipment to the Ordinance Survey Irish Transverse Mercator system of co-ordinates (ITM) and elevations to Malin Head datum. The

P16185_F01 3 of 8

exploratory locations were shown on the Exploratory Location layout and Plan (P16185-SI-A) attached.

In-Situ Testing

Standard Penetration Test

Standard Penetration Tests, N values, were typically carried out in the boreholes using the 60° solid cone in place of the standard split barrel sampler. The Standard Penetration Test was carried out in accordance with Geotechnical Investigation and Testing, Part 3 Standard penetration test, BS EN ISO 22476-3:2005+A1:2011. The data is presented on the exploratory logs accompanying this factual report. Elevated SPT (SPT = >50) values are attributed to cobble and boulder inclusions.

A geophysical survey consisting of 2D-Resistivity and seismic refraction (p-wave) was carried out as part of the N6 GTCP Phase 3 Contract 3 - Ground Investigation. The reporting is issued separately.

An *In situ* variable head (falling and rising) permeability test was carried out in 200mm diameter standpipe well, BH-MW64. *In-situ* permeability tests were carried out in accordance with BS5930: 1999, Section 4: Cl. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data is presented with this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_e (H_0/H_1)}{t}$$

Generally for all tests the specific depth range of the test was the slotted pipe of the standpipe. The ratio L/d was 20 to 60. A mean k measured ($k_H = k_V$), permeability in the soil was assumed equal in both horizontal and vertical direction, ($k_H/k_V = 1$.). The test geometry provided a shape factor, f of 20 for the tests undertaken.

P16185_F01 4 of 8

SUMMARY OF IN-SITU TESTING

Туре	Quantity	Remarks
Standard Penetration Test, N values	28No.	Nspt ranging from 8 to 91 including
		refusal >50.
		Nspt average = 36
Soakaway tests	17No.	See attached results
Rising head permeability test	01No.	1.20E-08ms ⁻¹
Geophysical Survey	2D-Res 5671lin.m	0 " 1 1 "
	Seismic refraction,	See attached results

Laboratory Testing

Laboratory testing was scheduled by Arup and carried out by GSTL on behalf of PGL in accordance with BS1377 (1990), Methods of test for soils for civil engineering purposes and the ISRM suggested methods for rock characterisation, testing and monitoring. The laboratory data accompanies the report and was summarised as follows;

Туре	GSTL	PGL	Remarks
	No.	No.	
Natural Moisture Content	40	2	4.4% to 48%
Atterberg limits	24	2	Liquid limit, LL 25% and 63%
			Plastic limit, PL14% to 46% incl. non plastic soils
			Plasticity index, Pl 11 to 28
Particle size distribution analysis	32	2	Incl. 31 hydrometer on fines. Refer to attached
			results,
pH	4		7.5 to 7.91 units
Water soluble Sulphate, SO ₄	4		<0.01g/l to 0.02g/l
Organic Content	5		0.9% to 11.4%
Consolidated Drained Shearbox	3		See attached results.
Consolidated Undrained	2		See attached results.
Shearbox			

P16185_F01 5 of 8

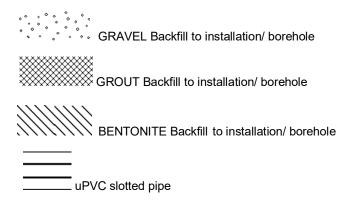
Published Geology

The geology of the study area (GSI 1:100,000 mapping Sheet 14) is defined the Burren Formation (BU), described as pale grey clean skeletal Limestone. Karst features in the form of turloughs, enclosed depressions, caves and springs are common within the formation. Karst is a design risk. The national groundwater aquifer vulnerability mapping indicates high to extreme vulnerability. The extreme rating is likely due to bedrock at or near the surface. A review of geotechnical report ref: 1340 titled 'N6 Galway Eastern Approach Road' identified a series of historical rotary boreholes. Rock was encountered at depths between 0.05m bgl to 0.8m bgl.

Teagasc subsoil mapping indicates that the area is underlain glacial till derived chiefly from Limestone parent rock. Outcropping karstified Limestone bedrock was also indicated on the subsoil mapping.

Ground and groundwater conditions

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (2015) and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002),— Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, in situ testing and details of the samples taken, together with any observations made during the ground investigation.


Groundwater was recorded when encountered during boring and trial pit excavations over a period of 20 minutes, noting any changes that may occur. Groundwater levels were also monitored at start and end of drilling shifts. It should be noted that the normal rate of boring may not permit the recording of equilibrium groundwater levels for any one groundwater water strike where casing may exclude low volume flows as the borehole progresses. Groundwater conditions observed in the borings or pits are those appertaining to the period of the investigation. Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage

P16185_F01 6 of 8

conditions, tidal variations etc. The groundwater regime should be assessed from standpipe well installations, where available.

Groundwater was monitored using Rugged Troll 100 Leveloggers. Continuous, absolute pressure (hydrostatic and barometric pressure) was measured *in situ* to determine continual groundwater levels at three (3) number locations RC63, RC64 and PW01. Loggers were installed in standpipe well installations as specified by Arup. Levels were monitored during pumping tests on PW01 to determine drawdown, if any on groundwater levels in the area. Levels were obtained prior to the pump test, during pumping and during the recharge phase. Accuracy was within 0.05% in water depths up to 30m. The data loggers are presented as digital spreadsheet data (*.xls).

Five (5) 50mm diameter standpipes were constructed at locations RC03-60, RC03-61, RC03-62, RC03-63 and RC03-64 to allow for groundwater monitoring, else exploratory boreholes were backfilled with (pelletised) cement-bentonite grout. A summary of groundwater monitoring is shown below.

P16185 - N6 GTCP	Phase 3 Contract 3							
Groundwat	er Readings							
Borehole No. 24/01/2017								
RC03-60	14.02m							
RC03-61	6.85m							
RC03-62	6.15m							
RC03-63	7.23m							
RC03-64	5.15m							
Pump Well	14.19m							

P16185_F01 7 of 8

Should you have any queries in relation to the data collected, please do not hesitate to contact our office.

Yours sincerely,

For Priority Geotechnical,

weenes

James McSweeney BSc Engineering Geologist

No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations.

No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.

This report has been prepared for Employer and their Representative as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

P16185_F01 8 of 8

KEY TO SYMBOLS ON EXPLORATORY HOLE RECORDS

All linear dimensions are in metres or millimetres

DESCRIPTIONS

** Drillers Description
Friable Easily crumbled

SAMPLES

U() Undisturbed 102mm diameter sample, () denotes number of blows to drive sampler

U()F, U()P F- not recovered, P-partially recovered
U38 Undisturbed 38mm diameter sample

P(F), (P) Piston sample - disturbed
B Bulk sample - disturbed
D Jar Sample - disturbed
W Water Sample

CBR California Bearing Ratio mould sample
ES Chemical Sample for Contamination Analysis

SPTLS Standard Penetration Test S lump sample from split sampler

CORE RECOVERY AND ROCK QUALITY

TCR Total Core Recovery (% of Core Run)

SCR Solid Core Recovery (length of core having at least one full diameter as % of core run)

RQD Rock Quality Designation (length of solid core greater than 100mm as % of core run)

Where there is insufficient space for the TCR, SCR and RQD, the results may be found in the remarks column

If Fracture Spacing in mm (Minimum/Average/Maximum) NI - non intact, NR - no recovery

AZCL Assumed Zone of Core Loss

NI Non intact

GROUNDWATER

abla Groundwater strike

▼ Groundwater level after standing period

Date/Water Date of shift (day/month)/Depth to water at end of previous shift shown above the date

and depth to water at beginning of shift given below the date $% \left(1\right) =\left(1\right) \left(1\right$

INSITU TESTING

S Standard Penetration Test - split barrel sampler
C Standard Penetration Test - solid 60° cone

SW Self Weight Penetration

Ivp, HVp (R) In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength

K(F), (C), (R), (P) Permeability Test
HP Hand Penetrometer Test

MEASURED PROPERTIES

N Standard Penetration Test - blows required to drive 300mm after seating drive

x/y Denotes x blows for y mm within the Standard Penetration Test

x*/y Denotes x blows for y mm within the seating drive

c_u Undrained Shear Strength (kN/m²)

CBR California Bearing Ratio

ROTARY DRILLING SIZES

Index Letter	Nominal Diameter (mm)						
	Borehole	Core					
N	75	54					
Н	99	76					
Р	120	92					
S	146	113					

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie PC
Logged By:
AH

Borehole No. BH03-62

Sheet 1 of 1

 Project Name:
 N6 GCTP Phase 3
 Project No. P16185
 Co-ords:
 532896E - 728291N
 Hole Type

 Location:
 Galway City, Co. Galway
 Level:
 17.77m OD
 Scale

 Client:
 Arup
 Date:
 05/12/2016
 05/12/2016

ell	Water Strike			n Situ Testing	Depth (m)	Level (mOD)	Legend	Stratum Description	
	(m)	Depth (m)	Туре	Results	(111)	(IIIOD)			
X		0.00 - 0.50 0.00 - 0.50	B D					Topsoil. CLAY.	
		0.00 - 0.50			0.40	47.07			
		0.50	SPT	N=8 (1,1/2,2,2,2)	0.40	17.37	4 000 9.00	Firm, brown, slightly sandy slightly gravelly CLAY with low cobble content. Sand is fine to coarse. Gravel is	
			(C)	, , , , , ,				low cobble content. Sand is fine to coarse. Gravel is	
M							4 .0°0 P.06	fine to coarse, sub-angular to sub-rounded. Cobbles are 200mm dia and sub-angular.	
		1.00 - 1.80	В		1.00	16.77	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Light brown slightly sandy slightly gravelly CLAY with	-
								Light brown, slightly sandy slightly gravelly CLAY with cobble content. Sand is fine to coarse. Gravel is fine	
								to medium, sub-angular to sub-rounded.	
X							a 70° 0 0 0		
		1.80	SPT	50 (25 for 0mm/50 for			- 10° 0 0 0 0		
<i>Y/</i> 2		1.00	(C)	75mm)	1.90	15.87	0 0 0 0	End of Borehole at 1.900m	
		1.90	(C) SPT	50 (25 for 0mm/50 for 75mm)				2.14 5. 20.51.515 4. 1.55511	
			(C)	75mm)					
- 1									

Groundwater:

Struck (m) Rose to After (mins) Sealed Comment None encountered.

Hole Information:
Hole Depth (m) Hole Dia (mm) Casing Dia (mm) Depth Top Depth Base Duration Tool 1.90 200 200

Equipment: Dando 2000.

Borehole terminated at 1.90m bgl due to obstruction, dense strata - refer to chiseling records.

Shift Data: Groundwater 05/12/2

Shift Hole Depth (m)
05/12/2016 08:00 0.00
05/12/2016 18:00 1.90

Remarks
Start of shift.
End of borehole.

pg	prior geotechn	-ity _{ical}				Tel: 02 Fax: 02 www.p	y Geotechr 1 4631600 21 4638690 rioritygeot		ie		Borehole N RC03-6 Sheet 1 o	6 0 f 2
⊃rojec	t Name	e: N6 GC	TP Phase	e 3		Proje P161	ct No. 85		Co-ords:	533447.09 - 728232.31	Hole Type RC	
ocati	on:	Galway	City, Co.	Galw	ay				Level:	57.28m OD	Scale 1:50	
Client:		Arup							Dates:	02/12/2016	Logged E AH	Зу
Nell	Water Strike	Depth (m)	Type /Fs		Coring		Depth (m) / FI	Level (mOD		Stratum Descrip	iption	
	(m)	50 (25 for Omm/50 for Omm) (C) 1.00 - 2.50 4.00 5.50 - 7.00 7.00 - 8.50	91mm 432mm	100	100	50 53 27 27 93	0.40 1.00 27/m	56.88		Open hole boring. Driller des Clay. Open hole boring. Driller des Weathered rock. Assumed Li Lithology: Moderately strong LIMESTONE. Weathering: Slightly weather orange oxidation, with clay sr fracture surfaces. Fractures: Main set oriented close to widely spaced, with trough fracture surfaces. Sect 70-80 degrees, medium spac undulating rough fracture sur	to strong, grey, ed, slight mearing on 10-25 degrees, undulating ond set oriented ed, with	3 3 3 4 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
			- 23mm 504mm				11/m					9
Froun Struck	dwater:	: ose to After, n	nin Seale			nment countere	Hole d.	nformat Depth (m) 15.40) Hole Dia (r 76	(131)	g: pth Base Duration	Tool
emark	(S:						Equip	mient.	Deltabase Shift D	Groundwater Shift		emarks t of shi
		minated at 15 4m to 15.4m	_	50mm	dia st	andpip	e installed	d. Respo		02/12/2016 08:00 Dry 02/12/2016 18:00) 15.40 E	nd of rehole

pg	prio	rity _{dical}				Tel: 0: Fax: 0	ty Geotechr 21 4631600 021 4638690 prioritygeot)	ie			Borehole N RC03-66 Sheet 2 of	0
Projec	ct Name	e: N6 GC	TP Phas	e 3		Proje	ect No.		Co-ords:	533447.09 - 72	28232.31	Hole Type	
Locati	on:	Galway	City, Co	. Galw	/ay				Level:	57.28m OD		Scale 1:50	
Client	:	Arup							Dates:	02/12/2016		Logged B AH	У
Well	Water Strike	Depth (m)	Type /Fs		Coring		Depth (m) / FI	Level (mOD		Stra	tum Description		
	(m)	8.50 - 10.00 10.00 - 11.50 11.50 - 13.00 13.00 - 14.50	48mm 766mm	100 100 100	100 87 100 100	93 50 40 27	16/m 21/m	41.88		10.00m to 10.40m.	Not Intact.		10 11 12 13 14 15 16 16 16 16 16 16 16
Groun Struck	dwater k, m R	: ose to After, m	in Seal			nment countere	Hole .	Informat Depth (m) 15.40 oment:		(431)	Chiselling: Depth Top Depth Base	• Duration	17 —
	ole teri	minated at 15 4m to 15.4m k		50mm	n dia st	andpip			Shift [Data: Groundwater 02	/12/2016 08:00 0.	.00 Start 5.40 Er	marks of shift. nd of ehole.

Number: RC03-60

Project Project No Engineer

: N6 GCTP : **No** P16185 **er** Arup

Project N6 GCTP
Project No P16185
Engineer Arup

Project N6 GCTP
Project No P16185
Engineer Arup

Number: RC03-60

pg	prior geotechn	rity _{ical}				Tel: 02 Fax: 0	ty Geotechi 21 4631600 021 4638690 prioritygeo)	ie		Borehole No. RC03-61 Sheet 1 of 2	
Projec	t Name	e: N6 GC	TP Phase	e 3		Proje	ect No. 185		Co-ords:	533623.69 - 728217.59	Hole Typ RC	
_ocati	on:	Galway	City, Co.	Galw	ay				Level:	57.19m OD	Scale 1:50	
Client:	•	Arup							Dates:	05/12/2016	Logged I	Зу
Well	Water Strike	Depth	Туре		Coring	'	Depth (m)	LCVCI		Stratum Descrip	_	
		(m) 10 (25 for 90mm/10 for 0mm) (C) 1.70 - 3.20 4.70 - 6.20 7.70 - 9.20	/Fs 124mm 422mm 46mm 562mm	87 100 100	28 73 80 100	73 15 83	1.20 1.70	55.99 55.49		Open hole boring. Driller describer describer describer describer des Weathered rock. Assumed Lilithology: Moderately strong LIMESTONE. Weathering: Moderately weathering: Moderately weathering on fracture surfaces. Fractures: Main set oriented close to widely spaced, with urough fracture surfaces. 1.70m to 2.40m bgl not intact.	cribed: Topsoil, cribed: metsone. to strong, grey, thered with clay s. 10-25 degrees,	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9
Struck	dwater: , m Ro	ose to After, m	nin Seale	ed		nment nift data.	Hole	Informat Depth (m) 15.50		mm) Casing Dia (mm) Chiselling Depth Top De	g: pth Base Duration	Tool
					CCG 31	uala.		oment:	Deltabase		Hala D. W. C. N. T.	<u> </u>
Remark Boreh		minated at 15	.50m bgl.						Shift D	Data: Groundwater Shift 05/12/2016 08:00 8:3 05/12/2016 18:00	0.00 Star 15.50 E	emarks t of shi End of rehole.

þ	prio geotechi	rity _{lical}				Tel: 0 Fax: (ity Geotechr 21 4631600 021 4638690 prioritygeot)	ie		RC03-6	1
Proje	ct Nam	e: N6 GC	TP Phas	e 3		Proj	ect No. 185		Co-ords:	533623.69 - 728217.59	Hole Typ	
Locat	ion:	Galway	City, Co	. Galw	/ay				Level:	57.19m OD	Scale 1:50	
Client	:	Arup							Dates:	05/12/2016	Logged E	Зу
Well	Water Strike	Depth (m)	Type /Fs		Corin		Depth (m) / FI	Level (mOD		Stratum Descrip	l	
	(m)	9.20 - 10.70 10.70 - 12.20 12.20 - 13.70 13.70 - 15.20	108mm 454mm 54mm 572mm	100 100 100 20	100 100 100 20	100 52 61	11/m 18/m 10/m	41.69		Lithology: Moderately strong LIMESTONE. Weathering: Moderately wea smearing on fracture surface Fractures: Main set oriented close to widely spaced, with rough fracture surfaces.	thered with clay s. 10-25 degrees, undulating	10 — 11 — 12 — 13 — 14 — 15 —
Struck	ndwater k, m R 3.30	: ose to After, m	iin Seal	ed		mment hift data	Hole _	Informat Depth (m) 15.50) Hole Dia (r 76	(11111)	g: epth Base Duration	18 —
Struck	k, m R 8.30 ks:						Hole _	Depth (m)) Hole Dia (r	mm) Casing Dia (mm) Depth Top De	epth Base Duration Hole Depth (m) Re 0 0.00 Star	T Tema

Project N6 GCTP
Project No P16185
Engineer Arup

N6 GCTP

P16185 Arup

Number: RC03-61 Project No Engineer

Project N6 GCTP Project No P16185 Engineer Arup

pg	prio	rity _{lical}			Tel: 0 Fax: 0	ty Geotechi 21 4631600 021 4638690 prioritygeo)	ie			RC03-62 Sheet 1 of 4	
Projec	t Name	e: N6 GCT	P Phase	e 3	Proje	ect No. 185		Co-ords:	532895.64 - 72829	90.66	Hole Type RO	
Locati	on:	Galway	City, Co	. Galway				Level:	17.77m OD		Scale 1:50	
Client:		Arup						Dates:	06/12/2016		Logged By	
Well	Water Strike	Depth (m)	Type /Fs	Corin	_	Depth (m) / FI	Level (mOD	Legend	Stratum	Description		_
	(m)	1.50 - 3.00 50 (3,4/50 for 0mm) (C) 3.00 - 4.50 N=12 (3,4/4,3,2,3) (C) 4.50 - 6.00 44 (5,8/44 for 75mm) (C) 6.00 - 7.50 50 (25 for 10mm/50 for 10mm) (C) 7.50 - 9.00 N=35 (8,8/5,8,9,13)	ВВВВВ	TCR SCR		1.70 2.40	16.07		Open hole boring. Dr. Clay. Open hole boring. Dr. dense Boulders. Open hole boring stiff, grey,	riller described: V	irm lay.	1 - 3 - 4 - 5 - 6 - 7 -
		9.00 - 10.50	В			- I		******	dense, silty sandy G	ravel.		9
Struck	dwater , m R 0.50	se to After, min	n Seale		mment shift data	Hole	Informat Depth (m) 30.00	Hole Dia (r 131	nm) Casing Dia (mm) Dep	hiselling: th Top Depth Base	Duration To	ool
						Equip	oment:	Deltabase			ath (ac)	
Remark Boreh		minated at 30.0	00m bgl					Shift D	o6/12/2	Shift Hole Dep 016 08:00 0.0 016 18:00 30.0	0 Start of s	shi of

pg	prio	rity _{cical}) 	ГеІ: 021 Fax: 02	Geotechr 4631600 4638690 fioritygeot	ı	ie			RC03-6 Sheet 2 o	62
Projec	t Name	e: N6 GC1	ΓP Phas	e 3		Projed P1618			Co-ords:	532895.64 - 72	28290.66	Hole Typ RO	Эе
Locati	on:	Galway	City, Co	. Galwa	ıy				Level:	17.77m OD		Scale 1:50	
Client:		Arup							Dates: 06/12/2016			Logged By	
Well	Water Strike	Depth (m)	Type /Fs		oring		Depth (m) / FI	Level (mOD		Stra	tum Descriptio	n	
	(m)	N=24 (5,6/6,8,4,6) (C) 10.50 - 12.00 N=13 (3,3/1,3,4,5) (C) 12.00 - 13.50 33 (3,5/33 for 115mm) (C) 13.50 - 15.00 0 (25 for 50mm/0 for 0mm) (C) 15.00 - 16.50 35 (16,10/35 for 85mm) (C)	ВВВ		SCR R		10.20	7.57		Open hole borin dense, silty sand	dy Gravel. g. Driller describ j very dense, ye	ped: Medium Ilow brown,	10 - 11 - 12 - 13 - 14 -
		(11,9/5,10,18, 19) (C)	В										17
Struck	dwater , m R 0.50	: ose to After, mi	in Seale		Comm See shift		Hole	Informat Depth (m) 30.00 Dement:		(434)	Chiselling: Depth Top Depth	Base Duration	Tool
Remark Boreh		minated at 30.	00m bgl						Shift D	ata: Groundwater 06	Shift H /12/2016 08:00 /12/2016 18:00	0.00 Star 30.00 E	emarks rt of shit End of orehole.

						ty Geotechn 21 4631600	ical Ltd.				Borehole N	No.
pg	prio	rity			Fax: 0)21 4638690 prioritygeot		ie			RC03-6	62
	geotechi	пса				priority good					Sheet 3 of	f 4
Projec	ct Name	e: N6 GC	TP Phas	e 3	Proje	ect No. 185		Co-ords:	532895.64 - 7	728290.66	Hole Typ RO	е
Locati	ion:	Galway	City, Co	. Galway				Level:	17.77m OD		Scale 1:50	
Client	:	Arup						Dates:	06/12/2016		Logged E	Зу
Well	Water Strike (m)	Depth (m)	Type /Fs	Coring TCR SCR		Depth (m) / FI	Level (mOD)	Legend	Str	atum Descriptio	on	
		N=21 (6,6/3,4,7,7) (C) 19.50 - 21.00 50 (25 for 0mm/50 for 0mm) (C) 21.00 - 22.50 N=65 (8,8/10,13,19, 23) (C) 22.50 - 24.00 25 (24 for 75mm/25 for 0mm) (C) 24.00 - 25.50 N=91 (9,19/18,24,2 4,25) (C) 25.50 - 27.00 50 (25 for 30mm/50 for 10mm) (C)	ВВВ	TOR SOR	RQD				22.50m: Locally r	nedium dense.		20 - 21 - 22 - 23 - 24 - 25 - 27 - 27 - 27 - 27 - 27 - 27 - 27
Struck	i dwater k, m R 0.50	: ose to After, m	in Seal		nment nift data	Hole I	nformat Depth (m) 80.00			Chiselling: Depth Top Depth	Base Duration	Tool
						Equip	ment:	Deltabas				
Remari Boreh		minated at 30.	.00m bgl					Shift	U	Shift H 6/12/2016 08:00 6/12/2016 18:00	0.00 Star 30.00 E	emarks t of shift. End of rehole.

					Prior Tel: (rity Geotechn 021 4631600	nical Ltd.				Borehole N	lo.
þô	prior	ity ^{ical}				021 4638690 prioritygeot		ie			RC03-6	2
											Sheet 4 of	
Projec	ct Name	e: N6 GC	TP Phas	e 3		ject No. 3185		Co-ords:	532895.64 - 72	8290.66	Hole Typ RO	е
Locati	ion:	Galway	City, Co	. Galway				Level:	17.77m OD		Scale 1:50	
Client	:	Arup						Dates:	06/12/2016		Logged E	Ву
Well	Water Strike	Depth	Туре	Corin		Depth (m) / FI	Level	Legend	Strat	tum Descriptio	n	
	(m)	(m) 50 (25 for 0mm/50 for 0mm) (C) 28.50 - 30.00 25 (10,16/25 for 10mm) (C) 50 (25 for 50mm/50 for 10mm) (C)	/Fs	TCR SCF	RQD	30.00	-12.23		28.50 - 30.00m: Lo		ense.	28 29 30 31 32 33 34
												35 —
Groun	dwater		<u> </u>	1 1		Hole I	nformat	ion:		Chiselling:		1
Struck		ose to After, m	nin Seal		mment shift data	Hole I	Depth (m) 30.00	Hole Dia (131	(131)	Depth Top Depth	Base Duration	Tool
						Equip	irient:	Deltabas	Craundurator	Shift Ho	ole Depth (m) Re	marks
Boreh		minated at 30.	.00m bg	l.				Shift I	Data: 06/	12/2016 08:00 12/2016 18:00	0.00 Start 30.00 E	t of shift. nd of rehole.

pg	prio l	rity _{nical}			Tel: 02 Fax: 0	ty Geotechr 21 4631600 21 4638690 prioritygeot)	ie			Borehole No.
Projec	t Nam	e: N6 GC	TP Phas	e 3	Proje	ect No.		Co-ords:	534688.05 - 7		Sheet 1 of 2 Hole Type RO
Locati	on:	Galway	City, Co	. Galwa				Level:	36.20m OD		Scale 1:50
Client		Arup						Dates:	01/12/2016		Logged By
Well	Water Strike	Depth (m)	Type /Fs		J9	Depth (m) / FI	Level (mOD		Stra	tum Description	
3 13	(m)			TCR	SCR RQD				Open hole borin Clay.	g. Driller described: T	opsoil.
		50 (25 for 10mm/50 for 10mm) (C) 50 (25 for 0mm/50 for 0mm) (C)				2.30	35.90		Weathered rock	g. Driller described: g. Driller described: F	1 - 2 - 2 - 3 - 4 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7
Groun	dwater	:				Hole I	Informat	ion:		Chiselling:	8 -
Struck	x, m R	ose to After, m	in Seal		Comment		Depth (m) 10.00	Hole Dia (r 131	mm) Casing Dia (mm) 131	Depth Top Depth Base	Duration Tool
				1401	onoountere		ment:	Deltabase		01:15	
	ole ter	minated at 10 ne from 4.0m			dia standp	ipe installe	ed.	Shift D	01	Shift Hole De /12/2016 08:00 0.0 /12/2016 18:00 10.0	0 Start of shift

					Priorit	y Geotechr 21 4631600	nical Ltd.				Borehole I	No.
pg	prio	rity			Fax: 0	21 4638690 prioritygeot		ie			RC03-6	63
	geoteen	iicui			'	,,					Sheet 2 o	f 2
Proje	ct Nam	e: N6 0	GCTP Phas	se 3	Proje P161	ect No. 85		Co-ords:	534688.05 - 7	26922.21	Hole Typ RO	
Locat	ion:	Galw	ay City, Co	. Galway				Level:	36.20m OD		Scale 1:50	
Client	:	Arup						Dates:	01/12/2016		Logged I	Ву
Well	Water Strike	Depth (m)	Type /Fs	Cori	.9	Depth (m) / FI	Level (mOD)	Legend	Stra	itum Descriptio	n	
	(m)	(111)	77.0	TCR SCI	RQD		(11102)	/	Open hole borir	g. Driller describ	ed: Rock.	+
						10.00	26.20		End o	f Borehole at 10.000)m	10 —
									End o	i borenole at 10.000)(II)	-
												11 -
												12 -
												13 —
												14 —
												15 —
												16 -
												17 —
												18
Grour	ndwater	:				Hole I	nformat	ion:	<u> </u>	Chiselling:		
Struck			r, min Seal		omment encountere	Hole	Depth (m) 10.00		(mm) Casing Dia (mm) 131	Depth Top Depth	Base Duration	Tool
							ment:	Deltabas	se 520.			
Remar	ks:					-		Shift I	Data: Groundwater 01	Shift He /12/2016 08:00		emarks rt of shift.
		minated at ne from 4.0			a standpi	pe installe	ed.			/12/2016 18:00	10.00 E	End of prehole.

pg	prior i	i ty			Tel: 02 Fax: 02	/ Geotechr 1 4631600 21 4638690 rioritygeot)	ie			Borehole RC03-0 Sheet 1 c	64
Projec	t Name	: N6 GC	TP Phas	e 3	Proje P161	ct No. 85		Co-ords:	534688.51 - 7	26961.05	Hole Ty	
Locati	on:	Galway	City, Co	. Galway				Level:	37.62m OD		Scale	
Client	•	Arup						Dates:	01/12/2016		1:50 Logged	Ву
Well	Water Strike	Depth	Туре	Coring	g	Depth (m) / FI	Level	Legend	l Stra	atum Description	<u> </u>	
VVCII	(m)	(m)	/Fs	TCR SCR	RQD	/ []	(mOD) Legend		ng. Driller describe		
						2.90	37.32		Clay. Open hole borir Weathered rock	ng. Driller describe	ed:	3 - 3 - 6 - 7 - 8 - 8 -
						0.00	23.02		End o	of Borehole at 8.000n	n	9 —
Groun	dwater:					Hole I	 nformat	ion:		Chiselling:		
Struck		se to After, m	nin Seal		nment	Hole	Depth (m) 8.00			Depth Top Depth E	Base Duration	Tool
				None en	countered	J	ment:	Deltaba				
Remar	ks:					l		Shift	Data: Groundwater 01	Shift Ho 1/12/2016 08:00		emarks rt of shift.
		ninated at 8.0 m to 8.0m.	00m bgl.	50mm dia st	andpipe	e installed	d. Respo	inse		//12/2016 18:00	8.00	None countered

pg	priority geotechnical				Te Fa	/ Geotech I: 021 463 x: 021 463 oritygeot	1600 TD0	Pit No 3-19 1 of 1
Proje Name		Phase 3	3	Pro j P16	ject No. 185		Co-ords:531192.33 - 728489.43 Da Level: 18.88 12/12	ite
Locat Clien	ion: Galway (City, Co. (Galway				Depth: Oci Log	25 ged
Water Strike	Sam Depth	ples & In S	Situ Testing Results	Depth (m)	Level (m)	Legend	0.25 V	ı
				0.20 0.25	18.68 18.63		Topsoil. Soft, brown, slightly gravelly sandy SILT. Gravel is fine to coarse, angular to sub-angular, Limestone lithology. Sand is fine to coarse. Firm, light grey to light brown, slightly sandy gravelly SILT with high cobble content and medium boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to sub-angular, Limestone lithology. Cobbles are angular to sub-rounded, 63-200mm dia. Limestone lithology. Boulders are angular to sub-angular, 200-700mm dia. Limestone lithology. End of Pit at 0.25m	1-

Stability: Good.
Plant: 6t track machine.
Backfill: Arisings.
Remarks: Trial pit terminated at 0.25m bgl on bedrock. Groundwater: None encountered.

5 -

Number: TP03-19

Project Project No Engineer

N6 GCTP P16185 Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No **TP03-50** Sheet 1 of 1

Date

Project N6 GCTP Phase 3 Name:

Project No. P16185

Co-ords:532910.81 - 728281.73 **Level:** 18.04

01/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

1.30

4.00

lient	: Arup						Depth: 4.00		o gged AH
Strike		ples & In Situ	Testing	Depth	Level	Legend	Stratum Descr	rintion	
Str	Depth	Туре	Results	(m)	(m)	Logona		прион	
							Topsoil.		
				0.40	17.64		Soft to firm, grey, slightly gravelly fine to coarse. Gravel is fine to co	sandy CLAY. Sand is parse and sub-angular.	
	0.80 - 1.50 0.80 - 1.50	B D		0.80	17.24	******** ******* ****** ****** *****	Firm, grey, slightly sandy gravelly content. Sand is fine to coarse. G sub-rounded to rounded. Cobbles dia, sub-rounded to rounded.	CLAY with high cobble travel is fine to coarse, s are 63mm to 200mm	1
	1.50 - 2.00 1.50 - 2.00	B D							
	2.00 - 3.00 2.00 - 3.00	B D		2.00	16.04	× × × × × × × × × × × × × × × × × × ×	Very sandy very clayey GRAVEL.		
	3.00 - 4.00 3.00 - 4.00	B D		3.00	15.04		Firm, grey, slightly sandy slightly fine to coarse. Gravel is fine to co	gravelly CLAY. Sand is arse	
				4.00	14.04	<u>va. (612) g. o</u>	End of Pit at 4.	00m	

Plant: 14T track Backfill: Arisings.

Remarks: Trial pit terminated at 4.00m bgl, rock/ boulder obstruction.

Number: TP03-50

Project Project No Engineer N6 GCTP P16185 Arup

Number: TP03-50

Project Project No Engineer

N6 GCTP • P16185 Arup

					Geotech				Trial Pit	No	
pg	priority geotechnical				: 021 463 c: 021 463				TP03-	-51	
	geoteeniicai				www.pri	oritygeot	echnical.ie			Sheet 1	of 1
Proje	ct N6 GCTP	2	Proj	ject No.		Co-ords:53340	Co-ords:533409.80 - 728269.18)	
Name		riiase	3	P16	185		Level: 57.54			06/12/2	016
Locat	ion: Galway Ci	ity, Co.	Galway				Dimensions	(m): ⊗	3.00	Scal 1:25	
Clien	t : Arup						Depth: 0.80			Logg e DMC	
Samples & In Situ Testing Depth					Level			Ott	- Di-ti		
Water Strike	Depth	Туре	Results	(m)	n) (m)	Legend		Stratur	n Description		
_							Topsoil. Soft, s	lightly sand	y slightly gravelly SILT	T. Sand is	-

	Arup	0 L O''	. T#:-				0.80 DMC	
Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
		1,712					Topsoil. Soft, slightly sandy slightly gravelly SILT. Sand is fine to coarse. Gravel is fine to coarse and sub-angular.	
				0.30	57.24		Weathered rock. Recovered as: BOULDERS. Boulders are sub-angular, Limestone lithology.	
				0.80	56.74	0 0 3	End of Pit at 0.80m	
hilitr	Good.					Ground	vater: None encountered.	

Plant: 14T track machine.

Backfill: Arisings.

Remarks: Trial pit terminated at 0.80m bgl, on bedrock.

Number: TP03-51

Project Project No Engineer N6 GCTP P16185 Arup

Number: TP03-51

Project Project No Engineer

N6 GCTP No P16185 er Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No TP03-52 Sheet 1 of 1

Project No. **Co-ords:**533536.07 - 728203.64 Project N6 GCTP Phase 3 Name: P16185 **Level:** 56.79

Date 06/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

1.30 Logged

2.20

lient	: Arup						Depth: 1.25	Logg DM0	ed C
Strike	Samp	oles & In Situ	ı Testing	Depth	Level	Lagand			<u> </u>
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20 - 0.50 0.20 - 0.50	B D		0.15	56.64	* * * * * * * * * * * * * * * * * * *	Topsoil. Soft, light brown, slightly sandy gravelly \$ to coarse.	SILT. Sand is fine	
	0.50 - 1.20 0.50 - 1.20	B D		0.50	56.29		Soft to firm, slightly sandy gravelly CLAY content. Sand is fine to coarse. Gravel is sub-angular to sub-rounded. Cobbles are	with low cobble fine to coarse, sub-rounded.	
				1.25	55.54		End of Pit at 1.25m		

Plant: 14T track Backfill: Arisings.

Remarks: Trial pit terminated at 1.25m bgl, on bedrock.

Number: TP03-52

Project Project No Engineer

N6 GCTP No P16185 r Arup

Number: TP03-52

Project Project No Engineer

N6 GCTP No P16185 r Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No TP03-53 Sheet 1 of 1

Project N6 GCTP Phase 3 Name:

Project No. **Co-ords:**533686.85 - 728181.43 P16185 **Level:** 56.85

Date 06/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25 Logged

DMC

Client: Arup

1.50 Depth: 4.00

3.50

Strike	Samp	les & In Sit	tu Testing	Depth	Level	Lecond	Stratum Description	
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
				0.40	50.45		Topsoil.	
	0.50 - 0.90 0.50 - 0.90	B D		0.40	56.45		Soft, brown, sightly gravelly slightly sandy CLAY. Sand is fine to coarse.	
	1.00 - 1.50 1.00 - 1.50	B D		0.95	55.90		Soft to firm, light grey, slightly gravelly sandy CLAY with medium cobble content, low boulder content. Sand is fine to coarse. Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are 63mm to 200mm dia and sub-rounded. Boulders are 200mm to 300mm dia, sub-rounded to rounded.	
	2.00 - 2.50 2.00 - 2.50	B D						
	2.50 - 3.50 2.50 - 3.50	B D		2.50	54.35		Firm to stiff, light grey, slightly sandy gravelly SILT with medium cobble content. Cobbles are sub-rounded to rounded, Limestone lithology.	
	3.50 - 4.00 3.50 - 4.00	B D		3.50	53.35		Sandy very silty very gravely COBBLES.	
				4.00	52.85	20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	End of Pit at 4.00m	
	y: Good.						vater: None encountered.	

Plant: 14T track Backfill: Arisings.

Remarks: Trial pit terminated at 4.00m bgl. Difficult to excavate very stiff strata.

Number: TP03-53

Project Project No Engineer N6 GCTP P16185 Arup

Number: TP03-53

Project Project No Engineer

ect N6 GCTP ect No P16185 neer Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-03 Sheet 1 of 1

Project No. Project N6 GCTP Phase 3 Name: P16185

Co-ords:531747.15 - 728409.59 Level: 30.01

8

Date 13/12/2016

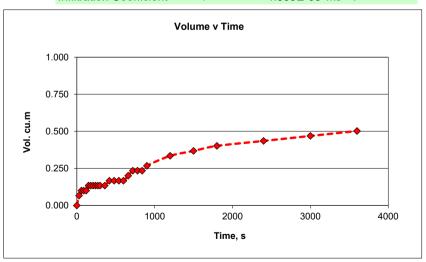
Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

3.30

ient	t: Arup						Depth: 0.45	Logged VT
Strike	Samp	oles & In Situ	Testing	Depth	Level	Legend	Stratum Description	
Stri	Depth	Туре	Results	(m)	(m)	Legend		
	0.15 - 0.45 0.15 - 0.45	B D		0.15	29.86	× - × - × - × - × - × - × - × - × - × -	Topsoil. Soft to firm, brown, slightly sandy SIL fine to coarse. Brown, very gravelly very silty SAND with high content and high boulder content. Sand is fine Gravel is fine to coarse, angular to sub-angular	n cobble to coarse.
				0.45	29.56		Limestone lithology. Cobbles are angular to si 63-200mm dia, Limestone lithology. Boulders to sub-angular, 200-750mm dia, Limestone litt End of Pit at 0.45m	ub-angular, are angular nology.
	r y: 0.45						vater: None encountered.	

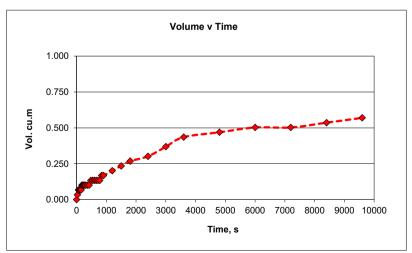

Backfill: Arisings.

Remarks: Soakaway pit terminated at 0.45m bgl on bedrock. Soakaway test carried out (BRE 365)

Test 1		SW3/03				13/12/2016
				d, m	0.47	
l, m	3.35	b, m	1	d_eff, m	0.17	
I_base, m	3.35			d_act, m	0.15	
I_eff, m	3.35					

Time a main	Measure, m	T:	Depth	Fall	Valuma
Time, min	bgl	Time, sec	water, m	Fall, m	Volume
0	0.3	0	0.17	0.00	0.000
0.5	0.32	30	0.15	0.02	0.067
1	0.33	60	0.14	0.03	0.101
1.5	0.33	90	0.14	0.03	0.101
2	0.33	120	0.14	0.03	0.101
2.5	0.34	150	0.13	0.04	0.134
3	0.34	180	0.13	0.04	0.134
3.5	0.34	210	0.13	0.04	0.134
4	0.34	240	0.13	0.04	0.134
4.5	0.34	270	0.13	0.04	0.134
5	0.34	300	0.13	0.04	0.134
6	0.34	360	0.13	0.04	0.134
7	0.35	420	0.12	0.05	0.168
8	0.35	480	0.12	0.05	0.168
9	0.35	540	0.12	0.05	0.168
10	0.35	600	0.12	0.05	0.168
11	0.36	660	0.11	0.06	0.201
12	0.37	720	0.10	0.07	0.235
13	0.37	780	0.10	0.07	0.235
14	0.37	840	0.10	0.07	0.235
15	0.38	900	0.09	0.08	0.268
20	0.4	1200	0.07	0.10	0.335
25	0.41	1500	0.06	0.11	0.369
30	0.42	1800	0.05	0.12	0.402
40	0.43	2400	0.04	0.13	0.436
50	0.44	3000	0.03	0.14	0.469
60	0.45	3600	0.02	0.15	0.503

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

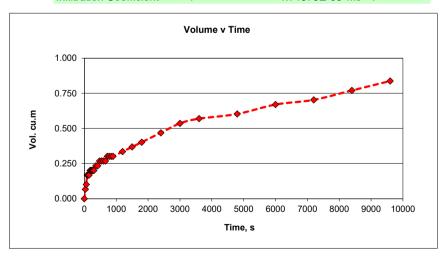


NOTES: See SW3/03 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2 SW3/03 13/12/2016 d, m 0.47

Time min	Measure,	Time 222	Depth	Fell	Valuma
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.3	0	0.17	0.00	0.000
0.5	0.31	30	0.16	0.01	0.034
1	0.32	60	0.15	0.02	0.067
1.5	0.32	90	0.15	0.02	0.067
2	0.32	120	0.15	0.02	0.067
2.5	0.32	150	0.15	0.02	0.067
3	0.33	180	0.14	0.03	0.101
3.5	0.33	210	0.14	0.03	0.101
4	0.33	240	0.14	0.03	0.101
4.5	0.33	270	0.14	0.03	0.101
5	0.33	300	0.14	0.03	0.101
6	0.33	360	0.14	0.03	0.101
7	0.33	420	0.14	0.03	0.101
8	0.34	480	0.13	0.04	0.134
9	0.34	540	0.13	0.04	0.134
10	0.34	600	0.13	0.04	0.134
11	0.34	660	0.13	0.04	0.134
12	0.34	720	0.13	0.04	0.134
13	0.34	780	0.13	0.04	0.134
14	0.35	840	0.12	0.05	0.168
15	0.35	900	0.12	0.05	0.168
20	0.36	1200	0.11	0.06	0.201
25	0.37	1500	0.10	0.07	0.235
30	0.38	1800	0.09	0.08	0.268
40	0.39	2400	0.08	0.09	0.302
50	0.41	3000	0.06	0.11	0.369
60	0.43	3600	0.04	0.13	0.436
80	0.44	4800	0.03	0.14	0.469
100	0.45	6000	0.02	0.15	0.503
120	0.45	7200	0.02	0.15	0.503
140	0.46	8400	0.01	0.16	0.536
160	0.47	9600	0.00	0.17	0.570

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}



NOTES: See SW3/03 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed saturated for second test. Infiltration rate calculated over actual fall.

Test 3		SW3/11				13/12/2016
				d, m	0.47	
l, m	3.35	b, m	1	d_eff, m	0.25	
I_base, m	3.35			d_act, m	0.25	
l_eff, m	3.35			_		

Time, min	Measure,	Time, sec	Depth	Fall, m	Volume
i iiiie, iiiiii	m bgl	rine, sec	water, m	ran, m	Volume
0	0.22	0	0.25	0.00	0.000
0.5	0.24	30	0.23	0.02	0.067
1	0.25	60	0.22	0.03	0.101
1.5	0.27	90	0.20	0.05	0.168
2	0.27	120	0.20	0.05	0.168
2.5	0.27	150	0.20	0.05	0.168
3	0.28	180	0.19	0.06	0.201
3.5	0.28	210	0.19	0.06	0.201
4	0.28	240	0.19	0.06	0.201
4.5	0.28	270	0.19	0.06	0.201
5	0.28	300	0.19	0.06	0.201
6	0.29	360	0.18	0.07	0.235
7	0.29	420	0.18	0.07	0.235
8	0.3	480	0.17	0.08	0.268
9	0.3	540	0.17	0.08	0.268
10	0.3	600	0.17	0.08	0.268
11	0.3	660	0.17	0.08	0.268
12	0.31	720	0.16	0.09	0.302
13	0.31	780	0.16	0.09	0.302
14	0.31	840	0.16	0.09	0.302
15	0.31	900	0.16	0.09	0.302
20	0.32	1200	0.15	0.10	0.335
25	0.33	1500	0.14	0.11	0.369
30	0.34	1800	0.13	0.12	0.402
40	0.36	2400	0.11	0.14	0.469
50	0.38	3000	0.09	0.16	0.536
60	0.39	3600	0.08	0.17	0.570
80	0.40	4800	0.07	0.18	0.603
100	0.42	6000	0.05	0.20	0.670
120	0.43	7200	0.04	0.21	0.704
140	0.45	8400	0.02	0.23	0.771
160	0.47	9600	0.00	0.25	0.838

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

NOTES:

See SW3/03 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed saturated for third test. Infiltration rate calculated over actual fall.

Number: SW03-03

Project Project No Engineer

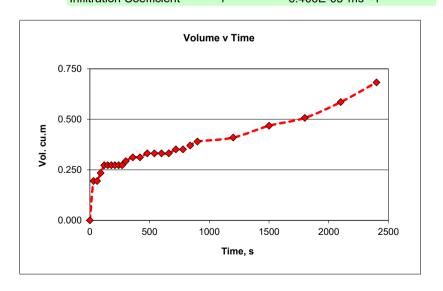
N6 GCTP No P16185 r Arup

Number: SW03-03

Project Project No Engineer

N6 GCTP P16185 Arup

					Priority	/ Geotech	nnical Ltd.		Trial Pit No	
pgl	priority geotechnical				Te	l: 021 463 x: 021 46	31600		SW03-04	
	geotechnical					technical.ie		Sheet 1 of 1		
Projec	t No corr		Project No.			Co-ords:533188.89 - 728353.66		Date		
Name:	lame:			P16	185		Level: 52.77		01/12/2016	
Locatio	n: Galway (City, Co. Ga	Galway				Dimensions (m):		Scale 1:25	
Client:	Arup						Depth:		Logged	
	Samples & In Situ Testing					T	0.35		DMC	
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description			
	Boptii	1,750	rtodulto				Topsoil. Soft, brown, slightly gravelly SILT.	-		
				0.35	52.42					
				0.00	02.12		End of Pit at 0.35m			
									1	
									2	
									3	
									4	
									5	

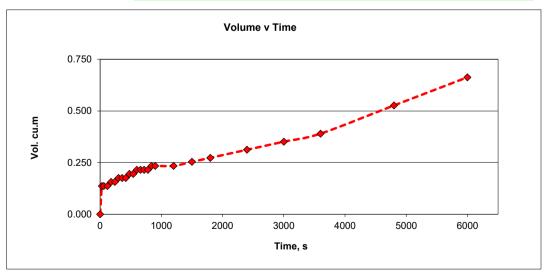

Stability: Good.
Plant: 14T track machine.
Backfill: Arisings.

Remarks: Soakaway pit terminated at 0.35m bgl, on bedrock. Soakaway test carried out (BRE 365).

Test 1		SW3/04				01/12/2016
				d, m	0.35	
l, m	1.5	b, m	1.3	d_eff, m	0.35	
l_base, m	1.5			d_act, m	0.35	
l eff, m	1.5			_		

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0	0	0.35	0.00	0.000
0.5	0.1	30	0.25	0.10	0.195
1	0.1	60	0.25	0.10	0.195
1.5	0.12	90	0.23	0.12	0.234
2	0.14	120	0.21	0.14	0.273
2.5	0.14	150	0.21	0.14	0.273
3	0.14	180	0.21	0.14	0.273
3.5	0.14	210	0.21	0.14	0.273
4	0.14	240	0.21	0.14	0.273
4.5	0.14	270	0.21	0.14	0.273
5	0.15	300	0.20	0.15	0.293
6	0.16	360	0.19	0.16	0.312
7	0.16	420	0.19	0.16	0.312
8	0.17	480	0.18	0.17	0.332
9	0.17	540	0.18	0.17	0.332
10	0.17	600	0.18	0.17	0.332
11	0.17	660	0.18	0.17	0.332
12	0.18	720	0.17	0.18	0.351
13	0.18	780	0.17	0.18	0.351
14	0.19	840	0.16	0.19	0.371
15	0.2	900	0.15	0.20	0.390
20	0.21	1200	0.14	0.21	0.410
25	0.24	1500	0.11	0.24	0.468
30	0.26	1800	0.09	0.26	0.507
35	0.30	2100	0.05	0.30	0.585
40	0.35	2400	0.00	0.35	0.683

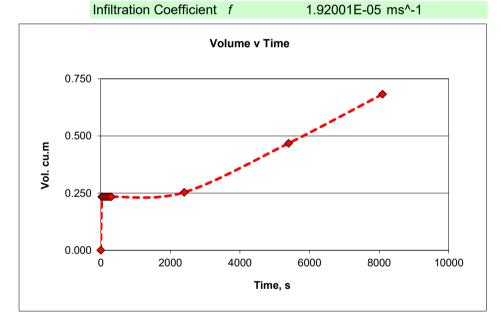
Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}


NOTES:

See SW3/04 log for detailed soil strata details: slightly gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/04				01/12/2016
				d, m	0.35	
l, m	1.5	b, m	1.3	d_eff, m	0.35	
l_base, m	1.5			d_act, m	0.34	
l_eff, m	1.5					

1.5	Measure.		Depth		
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0	0	0.35	0.00	0.000
0.5	0.07	30	0.28	0.07	0.137
1	0.07	60	0.28	0.07	0.137
2	0.07	120	0.28	0.07	0.137
3	0.08	180	0.27	0.08	0.156
4	0.08	240	0.27	0.08	0.156
5	0.09	300	0.26	0.09	0.176
6	0.09	360	0.26	0.09	0.176
7	0.09	420	0.26	0.09	0.176
8	0.1	480	0.25	0.10	0.195
9	0.1	540	0.25	0.10	0.195
10	0.11	600	0.24	0.11	0.215
11	0.11	660	0.24	0.11	0.215
12	0.11	720	0.24	0.11	0.215
13	0.11	780	0.24	0.11	0.215
14	0.12	840	0.23	0.12	0.234
15	0.12	900	0.23	0.12	0.234
20	0.12	1200	0.23	0.12	0.234
25	0.13	1500	0.22	0.13	0.254
30	0.14	1800	0.21	0.14	0.273
40	0.16	2400	0.19	0.16	0.312
50	0.18	3000	0.17	0.18	0.351
60	0.20	3600	0.15	0.20	0.390
80	0.27	4800	0.08	0.27	0.527
100	0.34	6000	0.01	0.34	0.663


Area	1.95		
50% Area_eff, a _{p50}	2.93 m^2	V _{p75-25 theory} volume	0.34125 m^3
50% Area_act, a _{p50}	2.902 m^2	V _{p 75 - 25 actu} volume	0.3315 m^3
		t _{p 75-25 actual} time	4620.00 s
	Infiltratio	n Coefficient f	2.47254E-05 ms^-1

NOTES: See SW3/04 log for detailed soil strata details: slightly gravelly SILT No groundwater was encountered, pit assumed saturated for second test. Infiltration rate calculated over actual fall.

Test 3		SW3/04				01/12/2016
				d, m	0.35	
l, m	1.5	b, m	1.3	d_eff, m	0.35	
l_base, m	1.5			d_act, m	0.35	
l_eff, m	1.5			_		

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0	0	0.35	0.00	0.000
0.5	0.12	30	0.23	0.12	0.234
1	0.12	60	0.23	0.12	0.234
2	0.12	120	0.23	0.12	0.234
3	0.12	180	0.23	0.12	0.234
4	0.12	240	0.23	0.12	0.234
5	0.12	300	0.23	0.12	0.234
40	0.13	2400	0.22	0.13	0.254
90	0.24	5400	0.11	0.24	0.468
135	0.35	8100	0.00	0.35	0.683

NOTES:

See SW3/04 log for detailed soil strata details: slightly gravelly SILT No groundwater was encountered, pit assumed saturated for third test. Infiltration rate calculated over actual fall.

Number: SW03-04

Project Project No Engineer N6 GCTP P16185 Arup

Number: SW03-04

Project N6 GCTP
Project N0 P16185
Engineer Arup

Backfill: Arisings.

Remarks: Soakaway pit terminated at 0.90m bgl, on bedrock. Soakaway test carried out (BRE 365).

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-05

Sheet 1 of 1

Project No. Project N6 GCTP Phase 3 Name: P16185

Co-ords:532788.59 - 727597.04

Level: 42.27

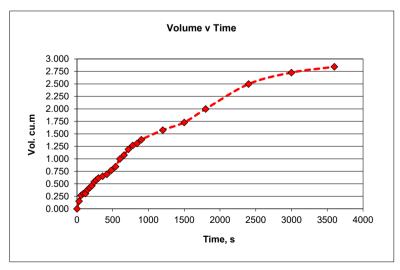
Date 30/11/2016

Location: Galway City, Co. Galway

Dimensions (m):

1.60

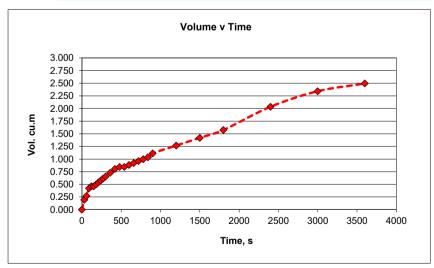
2.40 Scale


1:25 Logged

ient: Arup						Depth: Cogge 0.90 VT	
Sam Sam Depth	ples & In Situ	Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	
Зори	1,100	rocate	0.20	42.07		Topsoil. Firm, brown, slightly gravelly SILT with medium cobble content. Gravel is fine to coarse, angular to subrounded. Cobbles are 63mm to 200mm dia, angular to sub-rounded, Limestone lithology. Soft to firm, slightly gravelly sandy SILT with high cobble content, high boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to sub-angular. Cobbles are 63mm to 200mm dia, sub-angular to sub-rounded. Boulders are 200mm to 500mm dia, sub-angular to sub-rounded.	
			0.90	41.37		End of Pit at 0.90m	

Test 1 SW3/05 30/11/2016 0.9 d, m 1.6 I, m 2.4 b, m d_eff, m 0.74 I_base, m 2.4 d_act, m 0.74 l_eff, m 2.4

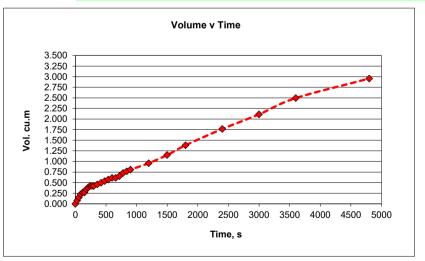
Z.4	Measure, m	Time are	Depth	Fall	Values
Time, min	bgl	Time, sec	water, m	Fall, m	Volume
0	0.16	0	0.74	0.00	0.000
0.5	0.2	30	0.70	0.04	0.154
1	0.23	60	0.67	0.07	0.269
1.5	0.24	90	0.66	0.08	0.307
2	0.24	120	0.66	0.08	0.307
2.5	0.26	150	0.64	0.10	0.384
3	0.27	180	0.63	0.11	0.422
3.5	0.28	210	0.62	0.12	0.461
4	0.3	240	0.60	0.14	0.538
4.5	0.31	270	0.59	0.15	0.576
5	0.32	300	0.58	0.16	0.614
6	0.33	360	0.57	0.17	0.653
7	0.34	420	0.56	0.18	0.691
8	0.36	480	0.54	0.20	0.768
9	0.38	540	0.52	0.22	0.845
10	0.42	600	0.48	0.26	0.998
11	0.44	660	0.46	0.28	1.075
12	0.47	720	0.43	0.31	1.190
13	0.49	780	0.41	0.33	1.267
14	0.5	840	0.40	0.34	1.306
15	0.52	900	0.38	0.36	1.382
20	0.57	1200	0.33	0.41	1.574
25	0.61	1500	0.29	0.45	1.728
30	0.68	1800	0.22	0.52	1.997
40	0.81	2400	0.09	0.65	2.496
50	0.87	3000	0.03	0.71	2.726
60	0.90	3600	0.00	0.74	2.842


3.84 m^2 Area 50% Area_eff, a_{p50} 6.8 m^2 1.4208 m^3 volume V _{p75-25 theory} 50% Area_act, a_{p50} 6.8 m^2 1.4208 m^3 V _{p 75 - 25 actual} volume 1800.00 s $t_{\rm p}$ 75- 25 actual time Infiltration Coefficient 0.000116 ms^-1

NOTES: See SW3/05 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/05				30/11/2016
				d, m	0.9	
l, m	2.4	b, m	1.6	d_eff, m	0.65	
I_base, m	2.4			d_act, m	0.65	
I_eff, m	2.4			_		

Time, min	Measure,	Time, sec	Depth	Fall, m	Volume
Time, min	m bgl	Tille, Sec	water, m	raii, iii	Volume
0	0.25	0	0.65	0.00	0.000
0.5	0.3	30	0.60	0.05	0.192
1	0.32	60	0.58	0.07	0.269
1.5	0.36	90	0.54	0.11	0.422
2	0.37	120	0.53	0.12	0.461
2.5	0.37	150	0.53	0.12	0.461
3	0.38	180	0.52	0.13	0.499
3.5	0.39	210	0.51	0.14	0.538
4	0.4	240	0.50	0.15	0.576
4.5	0.41	270	0.49	0.16	0.614
5	0.42	300	0.48	0.17	0.653
6	0.44	360	0.46	0.19	0.730
7	0.46	420	0.44	0.21	0.806
8	0.47	480	0.43	0.22	0.845
9	0.47	540	0.43	0.22	0.845
10	0.48	600	0.42	0.23	0.883
11	0.49	660	0.41	0.24	0.922
12	0.5	720	0.40	0.25	0.960
13	0.51	780	0.39	0.26	0.998
14	0.52	840	0.38	0.27	1.037
15	0.54	900	0.36	0.29	1.114
20	0.58	1200	0.32	0.33	1.267
25	0.62	1500	0.28	0.37	1.421
30	0.66	1800	0.24	0.41	1.574
40	0.78	2400	0.12	0.53	2.035
50	0.86	3000	0.04	0.61	2.342
60	0.90	3600	0.00	0.65	2.496



NOTES: See SW3/05 log for detailed soil strata details: slightly gravelly sandy SILT Second test pit assumed saturated. Infiltration rate calculated over actual fall.

Test 3		SW3/05				30/11/2016
				d, m	0.9	
l, m	2.4	b, m	1.6	d_eff, m	0.77	
I_base, m	2.4			d_act, m	0.77	
l_eff, m	2.4					

	Measure,		Depth	- "	
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.13	0	0.77	0.00	0.000
0.5	0.15	30	0.75	0.02	0.077
1	0.17	60	0.73	0.04	0.154
1.5	0.19	90	0.71	0.06	0.230
2	0.2	120	0.70	0.07	0.269
2.5	0.2	150	0.70	0.07	0.269
3	0.22	180	0.68	0.09	0.346
3.5	0.23	210	0.67	0.10	0.384
4	0.24	240	0.66	0.11	0.422
4.5	0.24	270	0.66	0.11	0.422
5	0.24	300	0.66	0.11	0.422
6	0.25	360	0.65	0.12	0.461
7	0.26	420	0.64	0.13	0.499
8	0.27	480	0.63	0.14	0.538
9	0.28	540	0.62	0.15	0.576
10	0.29	600	0.61	0.16	0.614
11	0.29	660	0.61	0.16	0.614
12	0.3	720	0.60	0.17	0.653
13	0.32	780	0.58	0.19	0.730
14	0.33	840	0.57	0.20	0.768
15	0.34	900	0.56	0.21	0.806
20	0.38	1200	0.52	0.25	0.960
25	0.43	1500	0.47	0.30	1.152
30	0.49	1800	0.41	0.36	1.382
40	0.59	2400	0.31	0.46	1.766
50	0.68	3000	0.22	0.55	2.112
60	0.78	3600	0.12	0.65	2.496
80	0.90	4800	0.00	0.77	2.957

Area	3.84 m^2		
50% Area_eff, a _{p50}	6.92 m^2	V _{p75-25 theory} volume	1.4784 m^3
50% Area_act, a _{p50}	6.92 m^2	V _{p 75 - 25 actι} volume	1.4784 m^3
		t _{p 75-25 actual} time	2280.00 s
	Infiltratio	n Coefficient f	9.37025E-05 ms^-1

NOTES: See SW3/05 log for detailed soil strata details: slightly gravelly sandy SILT Third test pit assumed saturated. Infiltration rate calculated over actual fall.

Number: SW03-05

Project Project No Engineer

N6 GCTP P16185 Arup

Number: SW03-05

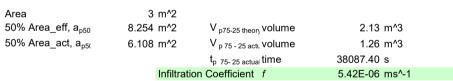
Project Project No Engineer

N6 GCTP lo P16185 Arup

priority geotechnical	Tel: 02 Fax: 02	otechnical Ltd. 1 4631600 1 4638690 geotechnical.ie
Project NG CCTD Phase 2	Project No.	Co-ords:534038.37 - 727783.11
Project Name: N6 GCTP Phase 3	P16185	Level: 48.56
	•	2.50

Trial Pit No SW03-06 Sheet 1 of 1 Date 05/12/2016 Scale

5 -


	ocation: Galway City, Co. Galway				Dimensions (iii).	Scale 1:25 Logged DMC		
Client:	<u> </u>						1.50 DI	MC
Strike	Samp Depth	Type	Results	Depth (m)	Level (m)	Legend	Stratum Description	
				0.40	48.16	* * * * * * * * * * * * * * * * * * *	Topsoil. Soft, brown, slightly sandy slightly gravelly SILT.	
				0.80	47.76	**************************************	Light grey, slightly sandy gravelly SILT.	
				1.50	47.06		End of Pit at 1.50m	


Groundwater: None encountered.

Stability: Moderate.
Plant: 14T track machine.
Backfill: Arisings.
Remarks: Soakaway pit terminated at required depth of 1.50m bgl.

Test 3 SW3/06 05/12/2016

2.5	Measure,		Depth	F. II	
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.08	0	1.42	0.00	0.000
0.5	0.08	30	1.42	0.00	0.000
1	0.09	60	1.41	0.01	0.030
1.5	0.09	90	1.41	0.01	0.030
2	0.1	120	1.40	0.02	0.060
2.5	0.1	150	1.40	0.02	0.060
3	0.11	180	1.39	0.03	0.090
3.5	0.11	210	1.39	0.03	0.090
4	0.11	240	1.39	0.03	0.090
4.5	0.11	270	1.39	0.03	0.090
5	0.12	300	1.38	0.04	0.120
6	0.12	360	1.38	0.04	0.120
7	0.13	420	1.37	0.05	0.150
8	0.13	480	1.37	0.05	0.150
9	0.13	540	1.37	0.05	0.150
15	0.15	900	1.35	0.07	0.210
20	0.18	1200	1.32	0.10	0.300
25	0.19	1500	1.31	0.11	0.330
30	0.20	1800	1.30	0.12	0.360
40	0.23	2400	1.27	0.15	0.450
50	0.26	3000	1.24	0.18	0.540
60	0.28	3600	1.22	0.20	0.600
70	0.30	4200	1.20	0.22	0.660
80	0.32	4800	1.18	0.24	0.720
100	0.35	6000	1.15	0.27	0.810
120	0.38	7200	1.12	0.30	0.900
140	0.41	8400	1.09	0.33	0.990
160	0.44	9600	1.06	0.36	1.080
205	0.46	12300	1.04	0.38	1.140
225	0.48	13500	1.02	0.40	1.200
245	0.50	14700	1.00	0.42	1.260
265	0.52	15900	0.98	0.44	1.320
285	0.53	17100	0.97	0.45	1.350
305	0.54	18300	0.96	0.46	1.380
1140	0.90	68400	0.60	0.82	2.460
1500	0.90	90000	0.60	0.82	2.460
1680	0.92	100800	0.58	0.84	2.520

NOTES: See SW3/06 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-06

Project Project No Engineer

N6 GCTP P16185 Arup

Arup

Project Project No Engineer N6 GCTP P16185 Number: SW03-06

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-07 Sheet 1 of 1

Project No. Project N6 GCTP Phase 3 Name: P16185

Co-ords:534619.39 - 726923.63 **Level:** 37.08

Date 29/11/2016

Location: Galway City, Co. Galway

Dimensions (m):

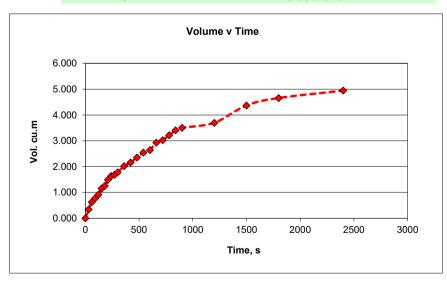
Scale 1:25

3.00

9

ient:	Arup						Depth: 1.10 Control	<u> </u>
Strike		ples & In Situ		Depth	Level	Legend	Stratum Description	
5	Depth	Туре	Results	(m)	(m)	**************************************	Firm, brown, slightly sandy slightly gravelly SILT with high cobble content, high boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to sub-angular. Cobbles are 63mm to 200mm dia, angular to sub-angular, Limestone lithology. Boulders are 200mm to 500mm dia, angular to sub-angular, Limestone lithology.	
				1.10	35.98	*** **** *****	End of Pit at 1.10m	

Plant: 12T track machine.

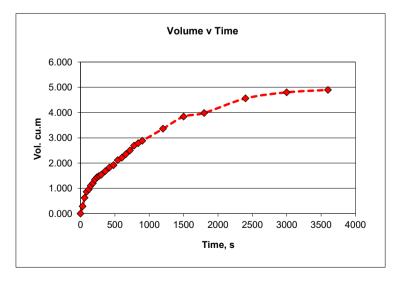

Backfill: Arisings.

Remarks: Soakaway pit terminated at 1.10m bgl on bedrock. Soakaway test carried out (BRE 365).

Test 1 SW3/07 29/11/2016 d, m 1.1 d_eff, m 1.6 I, m 3 1.03 b, m 1.03 I_base, m 3 d_act, m I_eff, m 3

Time, min	Measure, m	Time, sec	Depth	Fall, m	Volume	
Tillie, Illili	bgl	rille, sec	water, m	raii, iii	TOTALLIC	
0	0.07	0	1.03	0.00	0.000	
0.5	0.14	30	0.96	0.07	0.336	
1	0.2	60	0.90	0.13	0.624	
1.5	0.23	90	0.87	0.16	0.768	
2	0.26	120	0.84	0.19	0.912	
2.5	0.31	150	0.79	0.24	1.152	
3	0.33	180	0.77	0.26	1.248	
3.5	0.38	210	0.72	0.31	1.488	
4	0.41	240	0.69	0.34	1.632	
4.5	0.42	270	0.68	0.35	1.680	
5	0.44	300	0.66	0.37	1.776	
6	0.49	360	0.61	0.42	2.016	
7	0.52	420	0.58	0.45	2.160	
8	0.56	480	0.54	0.49	2.352	
9	0.6	540	0.50	0.53	2.544	
10	0.62	600	0.48	0.55	2.640	
11	0.68	660	0.42	0.61	2.928	
12	0.7	720	0.40	0.63	3.024	
13	0.74	780	0.36	0.67	3.216	
14	0.78	840	0.32	0.71	3.408	
15	0.8	900	0.30	0.73	3.504	
20	0.84	1200	0.26	0.77	3.696	
25	0.98	1500	0.12	0.91	4.368	
30	1.04	1800	0.06	0.97	4.656	
40	1.10	2400	0.00	1.03	4.944	

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}


NOTES:

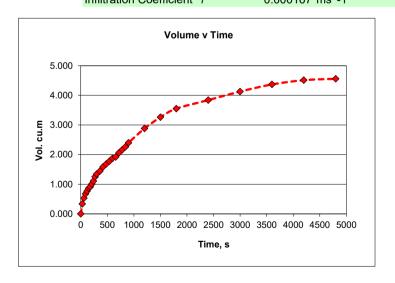
See SW3/07 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/07				29/11/2016
				d, m	1.1	
l, m	3	b, m	1.6	d_eff, m	1.02	
l_base, m	3			d_act, m	1.02	
l_eff, m	3					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.08	0	1.02	0.00	0.000
0.5	0.14	30	0.96	0.06	0.288
1	0.21	60	0.89	0.13	0.624
1.5	0.26	90	0.84	0.18	0.864
2	0.28	120	0.82	0.20	0.960
2.5	0.31	150	0.79	0.23	1.104
3	0.33	180	0.77	0.25	1.200
3.5	0.36	210	0.74	0.28	1.344
4	0.38	240	0.72	0.30	1.440
4.5	0.39	270	0.71	0.31	1.488
5	0.4	300	0.70	0.32	1.536
6	0.43	360	0.67	0.35	1.680
7	0.46	420	0.64	0.38	1.824
8	0.48	480	0.62	0.40	1.920
9	0.52	540	0.58	0.44	2.112
10	0.54	600	0.56	0.46	2.208
11	0.57	660	0.53	0.49	2.352
12	0.6	720	0.50	0.52	2.496
13	0.64	780	0.46	0.56	2.688
14	0.66	840	0.44	0.58	2.784
15	0.68	900	0.42	0.60	2.880
20	0.78	1200	0.32	0.70	3.360
25	0.88	1500	0.22	0.80	3.840
30	0.91	1800	0.19	0.83	3.984
40	1.03	2400	0.07	0.95	4.560
50	1.08	3000	0.02	1.00	4.800
60	1.10	3600	0.00	1.02	4.896

Area	4.8 m^2			
50% Area_eff, a	9.492 m^2	$V_{p75-25\ theory}$ volume	2.448 m^3	
50% Area_act,	9.492 m^2	V _{p 75 - 25 actu} volume	2.448 m^3	
		t _{p 75-25 actual} time	1211.00 s	
	Infiltratio	n Coefficient f	0.000213 ms^-1	

NOTES:


See SW3/07 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed saturated on second test. Infiltration rate calculated over actual fall.

P161	85	N6	GCTF

Test 3		SW3/07				29/11/2016
				d, m	1.1	
l, m	3	b, m	1.6	d_eff, m	0.95	
I_base, m	3			d_act, m	0.95	
l_eff, m	3					

	Measure,		Depth		
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.15	0	0.95	0.00	0.000
0.5	0.22	30	0.88	0.07	0.336
1	0.26	60	0.84	0.11	0.528
1.5	0.29	90	0.81	0.14	0.672
2	0.31	120	0.79	0.16	0.768
2.5	0.33	150	0.77	0.18	0.864
3	0.34	180	0.76	0.19	0.912
3.5	0.36	210	0.74	0.21	1.008
4	0.38	240	0.72	0.23	1.104
4.5	0.41	270	0.69	0.26	1.248
5	0.43	300	0.67	0.28	1.344
6	0.45	360	0.65	0.30	1.440
7	0.48	420	0.62	0.33	1.584
8	0.5	480	0.60	0.35	1.680
9	0.52	540	0.58	0.37	1.776
10	0.54	600	0.56	0.39	1.872
11	0.55	660	0.55	0.40	1.920
12	0.58	720	0.52	0.43	2.064
13	0.6	780	0.50	0.45	2.160
14	0.62	840	0.48	0.47	2.256
15	0.65	900	0.45	0.50	2.400
20	0.75	1200	0.35	0.60	2.880
25	0.83	1500	0.27	0.68	3.264
30	0.89	1800	0.21	0.74	3.552
40	0.95	2400	0.15	0.80	3.840
50	1.01	3000	0.09	0.86	4.128
60	1.06	3600	0.04	0.91	4.368
70	1.09	4200	0.01	0.94	4.512
80	1.10	4800	0.00	0.95	4.560

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

NOTES:

See SW3/07 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed saturated on third test. Infiltration rate calculated over actual fall.

Number: SW03-07 Project

Project Project No Engineer

N6 GCTP P16185 Arup

Number: SW03-07

Project Project No Engineer

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-08 Sheet 1 of 1

Project No. **Co-ords:**534660.70 - 726868.16 Project N6 GCTP Phase 3 Name: P16185

Level: 34.45

Date 29/11/2016

Location: Galway City, Co. Galway

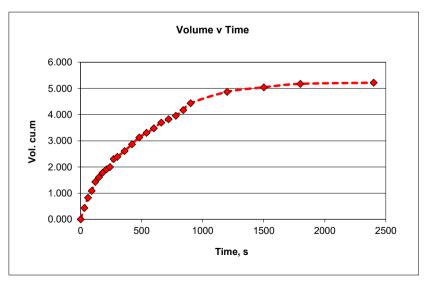
Dimensions (m):

Scale 1:25

.50

3.20

lient:	Arup						Depth: + + + + + + + + + + + + + + + + + + +	Logged VT	t
Strike	Samp	oles & In Situ	u Testing	Depth	Level	Legend	Stratum Description		
. ts	Depth	Туре	Results	(m) 0.35	(m) 34.10		Topsoil. Soft to firm, brown, slightly sand SILT with high cobble content. Sand is fi Gravel is fine to coarse, angular to subare 63mm to 200mm dia, angular to subLimestone lithology. Firm, brown grey, slightly gravelly sandy cobble content, high boulder content. Sacoarse. Gravel is fine to coarse, angular Cobbles are 63mm to 200mm dia, angulangular. Boulders are 200mm to 500mm sub-angular, Llmestone lithology.	ne to coarse. rounded. Cobbles -rounded, SILT with high and is fine to to sub-rounded. ar to sub-	
				1.60	32.85		End of Pit at 1.60m		1
									2
									3
									4
abilitv:	Good to mode	erate.				Groundw	vater: None encountered.		5


Backfill: Arisings.

Remarks: Soakaway pit terminated at 1.60m bgl on bedrock. Soakaway test carried out (BRE 365).

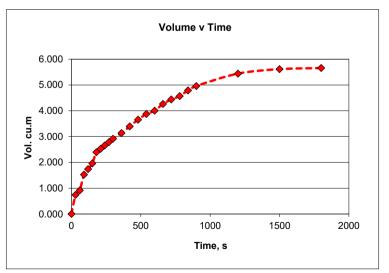
Test 1 SW3/08 29/01/2016 d, m 1.65 1.5 d eff, m 1.20 I, m 2.9 b, m 1.20 I_base, m 2.9 d act, m I_eff, m 2.9

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.45	0	1.20	0.00	0.000
0.5	0.55	30	1.10	0.10	0.435
1	0.64	60	1.01	0.19	0.827
1.5	0.7	90	0.95	0.25	1.088
2	0.78	120	0.87	0.33	1.436
2.5	0.82	150	0.83	0.37	1.610
3	0.86	180	0.79	0.41	1.784
3.5	0.89	210	0.76	0.44	1.914
4	0.91	240	0.74	0.46	2.001
4.5	0.98	270	0.67	0.53	2.306
5	1	300	0.65	0.55	2.393
6	1.05	360	0.60	0.60	2.610
7	1.11	420	0.54	0.66	2.871
8	1.17	480	0.48	0.72	3.132
9	1.21	540	0.44	0.76	3.306
10	1.25	600	0.40	0.80	3.480
11	1.3	660	0.35	0.85	3.698
12	1.33	720	0.32	0.88	3.828
13	1.36	780	0.29	0.91	3.959
14	1.41	840	0.24	0.96	4.176
15	1.47	900	0.18	1.02	4.437
20	1.57	1200	0.08	1.12	4.872
25	1.61	1500	0.04	1.16	5.046
30	1.64	1800	0.01	1.19	5.177
40	1.65	2400	0.00	1.20	5.220

4.35 m^2 Area 50% Area_eff, a_{p50} 9.63 m^2 $V_{p75-25 \, theory}$ volume 2.61 m^3 50% Area_act, a_{p50} volume 9.63 m^2 V _{p 75 - 25 actual} 2.61 m^3 time 651.00 s t_{p 75-25 actual} Infiltration Coefficient 0.0004163 ms^-1

NOTES: See SW3/08 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2 SW3/08 29/01/2016


 I, m
 2.9
 b, m
 1.5
 d_eff, m
 1.30

 I_base, m
 2.9
 d_act, m
 1.30

 I_eff, m
 2.9

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.35	0	1.30	0.00	0.000
0.5	0.52	30	1.13	0.17	0.740
1	0.56	60	1.09	0.21	0.914
1.5	0.7	90	0.95	0.35	1.523
2	0.75	120	0.90	0.40	1.740
2.5	0.8	150	0.85	0.45	1.958
3	0.9	180	0.75	0.55	2.393
3.5	0.93	210	0.72	0.58	2.523
4	0.96	240	0.69	0.61	2.654
4.5	0.99	270	0.66	0.64	2.784
5	1.02	300	0.63	0.67	2.915
6	1.07	360	0.58	0.72	3.132
7	1.13	420	0.52	0.78	3.393
8	1.19	480	0.46	0.84	3.654
9	1.24	540	0.41	0.89	3.872
10	1.27	600	0.38	0.92	4.002
11	1.33	660	0.32	0.98	4.263
12	1.37	720	0.28	1.02	4.437
13	1.4	780	0.25	1.05	4.568
14	1.45	840	0.20	1.10	4.785
15	1.49	900	0.16	1.14	4.959
20	1.6	1200	0.05	1.25	5.438
25	1.64	1500	0.01	1.29	5.612
30	1.65	1800	0.00	1.30	5.655
40	1.65	2400	0.00	1.30	5.655

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

NOTES: See SW3/08 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed saturated for second test. Infiltration rate calculated over actual fall.

Test 2		SW3/08				29/01/2016
				d, m	1.65	
l, m	2.9	b, m	1.5	d_eff, m	1.25	
I_base, m	2.9			d_act, m	1.25	
I_eff, m	2.9					

Z.9	Measure,	Time	Depth	Fall m	Valuma
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.4	0	1.25	0.00	0.000
0.5	0.48	30	1.17	0.08	0.348
1	0.55	60	1.10	0.15	0.653
1.5	0.64	90	1.01	0.24	1.044
2	0.71	120	0.94	0.31	1.349
2.5	0.75	150	0.90	0.35	1.523
3	8.0	180	0.85	0.40	1.740
3.5	0.85	210	0.80	0.45	1.958
4	0.9	240	0.75	0.50	2.175
4.5	0.96	270	0.69	0.56	2.436
5	1	300	0.65	0.60	2.610
6	1.07	360	0.58	0.67	2.915
7	1.15	420	0.50	0.75	3.263
8	1.19	480	0.46	0.79	3.437
9	1.22	540	0.43	0.82	3.567
10	1.28	600	0.37	0.88	3.828
11	1.32	660	0.33	0.92	4.002
12	1.36	720	0.29	0.96	4.176
13	1.39	780	0.26	0.99	4.307
14	1.42	840	0.23	1.02	4.437
15	1.47	900	0.18	1.07	4.655
20	1.53	1200	0.12	1.13	4.916
25	1.59	1500	0.06	1.19	5.177
30	1.63	1800	0.02	1.23	5.351
40	1.65	2400	0.00	1.25	5.438

NOTES: See SW3/08 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed saturated on third test. Infiltration rate calculated over actual fall.

Number: SW03-08

Project Project No Engineer

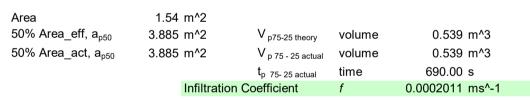
Number: SW03-08

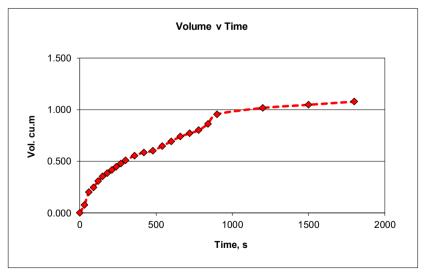
Project Project No Engineer

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690

Trial Pit No SW03-09

	www.priority	geotechnical.ie		Sheet 1 of 1
Project N6 GCTP Phase 3	Project No.	Co-ords: -		Date
Name:	P16185	Level:		29/11/2016
Location: Galway City, Co. Galway		Dimensions (m): ເດ	2.80	Scale 1:25
Client: Arup		Depth : τΩ τΩ		Logged VT

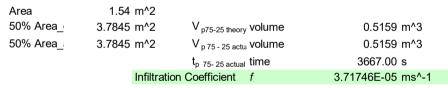

lient:	Arup						Depth: 7.30 0.80	Logge VT	ed
Strike	Samp	les & In Sit	u Testing	Depth	Level	Legend	Stratum Description	<u> </u>	
st	Depth	Туре	Results	(m)	(m)	Legend			1
				0.20			Topsoil. Firm, brown, slightly sandy SILT. Soft to firm, brown grey, slightly gravelly with high cobble content, medium boulde is fine to coarse. Gravel is fine to coarse, rounded. Cobbles are 63mm to 200mm of sub-rounded, Limestone lithology. Boulde to 400mm dia, angular to sub-rounded, Lithology.	very sandy SILT r content. Sand angular to sub- lia, angular to ers are 200mm	
				0.80		(2.0)×.25×3	End of Pit at 0.80m		
									1
									2
									3
									4
									į
ability:	Good					Ground	vater: None encountered.		Щ

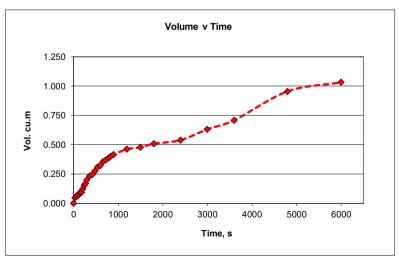

Backfill: Arisings.

Remarks: Soakaway pit terminated at 0.80m bgl due to obstruction.

Test 1		SW3/09				30/11/2016
				d, m	0.8	
l, m	2.8	b, m	0.55	d_eff, m	0.70	
l_base, m	2.8			d_act, m	0.70	
I_eff, m	2.8					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.1	0	0.70	0.00	0.000
0.5	0.15	30	0.65	0.05	0.077
1	0.23	60	0.57	0.13	0.200
1.5	0.26	90	0.54	0.16	0.246
2	0.3	120	0.50	0.20	0.308
2.5	0.33	150	0.47	0.23	0.354
3	0.35	180	0.45	0.25	0.385
3.5	0.37	210	0.43	0.27	0.416
4	0.39	240	0.41	0.29	0.447
4.5	0.41	270	0.39	0.31	0.477
5	0.43	300	0.37	0.33	0.508
6	0.46	360	0.34	0.36	0.554
7	0.48	420	0.32	0.38	0.585
8	0.49	480	0.31	0.39	0.601
9	0.52	540	0.28	0.42	0.647
10	0.55	600	0.25	0.45	0.693
11	0.58	660	0.22	0.48	0.739
12	0.6	720	0.20	0.50	0.770
13	0.62	780	0.18	0.52	0.801
14	0.66	840	0.14	0.56	0.862
15	0.72	900	0.08	0.62	0.955
20	0.76	1200	0.04	0.66	1.016
25	0.78	1500	0.02	0.68	1.047
30	0.80	1800	0.00	0.70	1.078

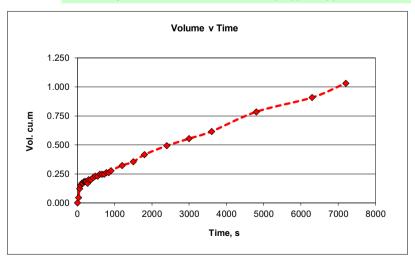




NOTES: See SW3/09 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/09				30/11/2016
				d, m	0.8	
l, m	2.8	b, m	0.55	d_eff, m	0.67	
l_base, m	2.8			d_act, m	0.67	
l_eff, m	2.8					_

2.8	Measure,		Depth		
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.13	0	0.67	0.00	0.000
0.5	0.16	30	0.64	0.03	0.046
1	0.17	60	0.63	0.04	0.062
1.5	0.17	90	0.63	0.04	0.062
2	0.18	120	0.62	0.05	0.077
2.5	0.19	150	0.61	0.06	0.092
3	0.19	180	0.61	0.06	0.092
3.5	0.21	210	0.59	0.08	0.123
4	0.23	240	0.57	0.10	0.154
4.5	0.24	270	0.56	0.11	0.169
5	0.26	300	0.54	0.13	0.200
6	0.28	360	0.52	0.15	0.231
7	0.29	420	0.51	0.16	0.246
8	0.31	480	0.49	0.18	0.277
9	0.33	540	0.47	0.20	0.308
10	0.34	600	0.46	0.21	0.323
11	0.36	660	0.44	0.23	0.354
12	0.37	720	0.43	0.24	0.370
13	0.38	780	0.42	0.25	0.385
14	0.39	840	0.41	0.26	0.400
15	0.4	900	0.40	0.27	0.416
20	0.43	1200	0.37	0.30	0.462
25	0.44	1500	0.36	0.31	0.477
30	0.46	1800	0.34	0.33	0.508
40	0.48	2400	0.32	0.35	0.539
50	0.54	3000	0.26	0.41	0.631
60	0.59	3600	0.21	0.46	0.708
80	0.75	4800	0.05	0.62	0.955
100	0.8	6000	0.00	0.67	1.032


NOTES:

See SW3/09 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed saturated for second test. Infiltration rate calculated over actual fall.

Test 3		SW3/09				30/11/2016
				d, m	0.8	
l, m	2.8	b, m	0.55	d_eff, m	0.67	
I_base, m	2.8			d_act, m	0.67	
I_eff, m	2.8					_

2.8	Measure,		Depth		
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.13	0	0.67	0.00	0.000
0.5	0.16	30	0.64	0.03	0.046
1	0.21	60	0.59	0.08	0.123
1.5	0.23	90	0.57	0.10	0.154
2	0.24	120	0.56	0.11	0.169
2.5	0.24	150	0.56	0.11	0.169
3	0.25	180	0.55	0.12	0.185
3.5	0.25	210	0.55	0.12	0.185
4	0.25	240	0.55	0.12	0.185
4.5	0.24	270	0.56	0.11	0.169
5	0.26	300	0.54	0.13	0.200
6	0.26	360	0.54	0.13	0.200
7	0.27	420	0.53	0.14	0.216
8	0.28	480	0.52	0.15	0.231
9	0.28	540	0.52	0.15	0.231
10	0.29	600	0.51	0.16	0.246
11	0.29	660	0.51	0.16	0.246
12	0.29	720	0.51	0.16	0.246
13	0.3	780	0.50	0.17	0.262
14	0.3	840	0.50	0.17	0.262
15	0.31	900	0.49	0.18	0.277
20	0.34	1200	0.46	0.21	0.323
25	0.36	1500	0.44	0.23	0.354
30	0.4	1800	0.40	0.27	0.416
40	0.45	2400	0.35	0.32	0.493
50	0.49	3000	0.31	0.36	0.554
60	0.53	3600	0.27	0.40	0.616
80	0.64	4800	0.16	0.51	0.785
105	0.72	6300	0.08	0.59	0.909
120	0.80	7200	0.00	0.67	1.032

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

NOTES: See SW3/09 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed saturated for third test. Infiltration rate calculated over actual fall.

Number: SW03-09

Project Project No Engineer

Number: SW03-09

Project Project No Engineer

ct N6 GCTP ct No P16185 neer Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-10 Sheet 1 of 1

Project No. **Co-ords:**535336.71 - 726865.32 Project N6 GCTP Phase 3 Name: P16185

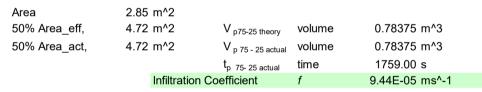
Level: 39.57

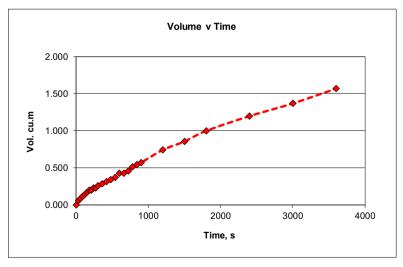
Date 02/12/2016

Dimensions (m):

Scale 1:25

Backfill: Arisings.

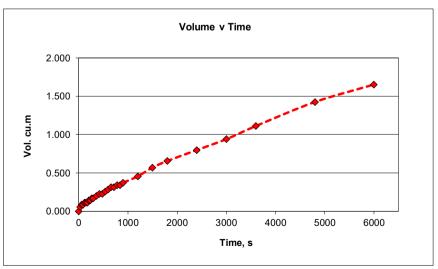

Remarks: Soakaway pit terminated at 0.70m bgl, on bedrock. Soakaway test carried out (BRE 365).


1.90

catio	n: Galway C	ity, Co. Ga	alway				Dimensions (m):	1:25
ient:	Arup						Depth: 0.70	Logged DMC
e e	Samp	oles & In Situ	Testing	Depth	Level			DIVIO
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
							Topsoil. Soft, brown, slightly gravelly SILT.	
	0.30 - 0.50	В		0.30	39.27		Firm, grey, gravelly SILT with high cobble content Cobbles are 63mm to 200mm dia, sub-angular to	
				0.50	39.07		rounded, Limestone lithology. Weathered rock. Recovered as: BOULDERS. Boundere 200mm to 400mm dia, angular, Limestone lith	ulders ology.
				0.70	38.87		End of Pit at 0.70m	

Test 1		SW3/10				02/12/2016
				d, m	0.7	
l, m	1.9	b, m	1.5	d_eff, m	0.55	
l_base, m	1.9			d_act, m	0.55	
l eff, m	1.9					

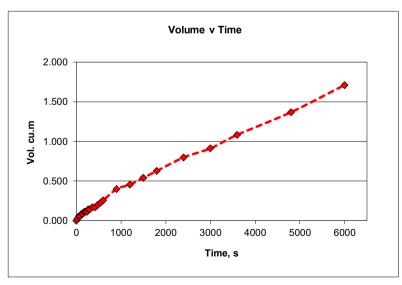
1.9			.		1
Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0 0.15		0.55	0.00	0.000
0.5	0.17	30	0.53	0.02	0.057
1	0.18	60	0.52	0.03	0.085
1.5	0.19	90	0.51	0.04	0.114
2	0.2	120	0.50	0.05	0.143
2.5	0.21	150	0.49	0.06	0.171
3	0.22	180	0.48	0.07	0.200
3.5	0.22	210	0.48	0.07	0.200
4	0.23	240	0.47	0.08	0.228
4.5	0.23	270	0.47	0.08	0.228
5	0.24	300	0.46	0.09	0.257
6	0.25	360	0.45	0.10	0.285
7	0.26	420	0.44	0.11	0.314
8	0.27	480	0.43	0.12	0.342
9	0.28	540	0.42	0.13	0.371
10	0.3	600	0.40	0.15	0.428
11	0.3	660	0.40	0.15	0.428
12	0.31	720	0.39	0.16	0.456
13	0.33	780	0.37	0.18	0.513
14	0.34	840	0.36	0.19	0.542
15	0.35	900	0.35	0.20	0.570
20	0.41	1200	0.29	0.26	0.741
25	0.45	1500	0.25	0.30	0.855
30	0.50	1800	0.20	0.35	0.998
40	0.57	2400	0.13	0.42	1.197
50	0.63	3000	0.07	0.48	1.368
60	0.70	3600	0.00	0.55	1.568



NOTES: See SW3/10 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/10				02/12/2016
				d, m	0.7	
l, m	1.9	b, m	1.5	d_eff, m	0.58	
l_base, m	1.9			d_act, m	0.58	
_ l_eff, m	1.9					

Time a main	Measure,	Time ass	Depth	Fall	Valuma
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.12	0	0.58	0.00	0.000
0.5	0.14	30	0.56	0.02	0.057
1	0.15	60	0.55	0.03	0.086
1.5	0.15	90	0.55	0.03	0.086
2	0.16	120	0.54	0.04	0.114
2.5	0.16	150	0.54	0.04	0.114
3	0.16	180	0.54	0.04	0.114
3.5	0.17	210	0.53	0.05	0.143
4	0.17	240	0.53	0.05	0.143
4.5	0.18	270	0.52	0.06	0.171
5	0.18	300	0.52	0.06	0.171
6	0.19	360	0.51	0.07	0.200
7	0.2	420	0.50	0.08	0.228
8	0.2	480	0.50	0.08	0.228
9	0.21	540	0.49	0.09	0.257
10	0.22	600	0.48	0.10	0.285
11	0.23	660	0.47	0.11	0.314
12	0.23	720	0.47	0.11	0.314
13	0.24	780	0.46	0.12	0.342
14	0.24	840	0.46	0.12	0.342
15	0.25	900	0.45	0.13	0.371
20	0.28	1200	0.42	0.16	0.456
25	0.32	1500	0.38	0.20	0.570
30	0.35	1800	0.35	0.23	0.656
40	0.40	2400	0.30	0.28	0.798
50	0.45	3000	0.25	0.33	0.941
60	0.51	3600	0.19	0.39	1.112
80	0.62	4800	0.08	0.50	1.425
100	0.70	6000	0.00	0.58	1.653



NOTES:

See SW3/10 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 3		SW3/10				02/12/2016
				d, m	0.7	
l, m	1.9	b, m	1.5	d_eff, m	0.60	
l_base, m	1.9			d_act, m	0.60	
l eff. m	1.9					

1.9	T = =	1			
Time, min	Measure,	Time, sec	Depth	Fall, m	Volume
	m bgl	, , , ,	water, m		
0	0.1	0	0.60	0.00	0.000
0.5	0.11	30	0.59	0.01	0.029
1	0.12	60	0.58	0.02	0.057
1.5	0.12	90	0.58	0.02	0.057
2	0.13	120	0.57	0.03	0.086
2.5	0.13	150	0.57	0.03	0.086
3	0.14	180	0.56	0.04	0.114
3.5	0.14	210	0.56	0.04	0.114
4	0.14	240	0.56	0.04	0.114
4.5	0.15	270	0.55	0.05	0.143
5	0.15	300	0.55	0.05	0.143
6	0.16	360	0.54	0.06	0.171
7	0.16	420	0.54	0.06	0.171
8	0.17	480	0.53	0.07	0.200
9	0.18	540	0.52	0.08	0.228
10	0.19	600	0.51	0.09	0.257
15	0.24	900	0.46	0.14	0.399
20	0.26	1200	0.44	0.16	0.456
25	0.29	1500	0.41	0.19	0.542
30	0.32	1800	0.38	0.22	0.627
40	0.38	2400	0.32	0.28	0.798
50	0.42	3000	0.28	0.32	0.912
60	0.48	3600	0.22	0.38	1.083
80	0.58	4800	0.12	0.48	1.368
100	0.71	6000	-0.01	0.60	1.710

NOTES:

See SW3/10 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-10

Project Project No Engineer

Number: SW03-10

Project N6 GCTP
Project N0 P16185
Engineer Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-11 Sheet 1 of 1

Project No. Project N6 GCTP Phase 3 Name: P16185

Co-ords:535486.56 - 726929.33

Level: 37.68

1.60

Date 02/12/2016

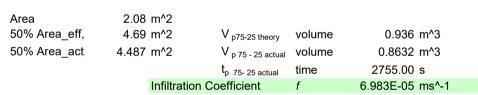
Location: Galway City, Co. Galway

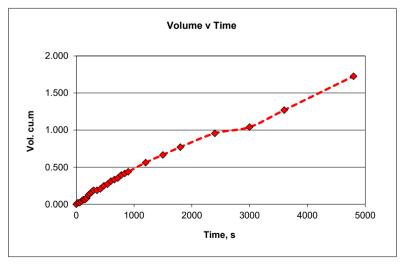
Dimensions (m):

Scale 1:25

1.30 Depth:

lient:	Arup					Depth: 7.00	Logge DMC	
Strike	Samp Depth	oles & In Situ	u Testing Results	Depth Lev		Legend	Stratum Description	
		7,7		0.30	37.38	* × × × × × × × × × × × × × × × × × × ×	Topsoil. Soft to firm, light grey, slightly sandy gravelly S low cobble content. Sand is fine to coarse. Grato coarse and sub-angular. Cobbles are sub-rounded, Limestone lithology.	SILT with avel is fine ounded to
				0.70	36.98		Weathered rock. Recovered as: BOULDERS. are angular, Limestone lithology.	Boulders
				1.00	36.68	0,00	End of Pit at 1.00m	

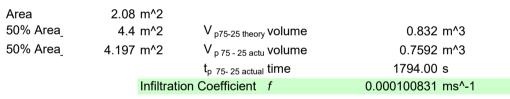

Plant: 14T track machine.

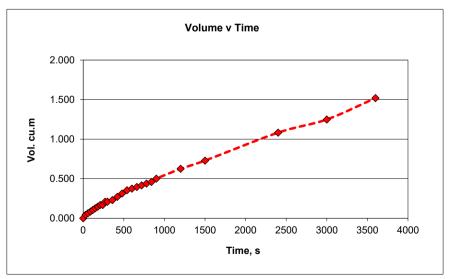

Backfill: Arisings.

Remarks: Soakaway pit terminated at 1.00m bgl, on bedrock. Soakaway test carried out (BRE 365).

Test 1		SW3/11				########
				d, m	1	
l, m	1.6	b, m	1.3	d_eff, m	0.90	
l_base, m	1.6			d_act, m	0.83	
l_eff, m	1.6					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.1	0	0.90	0.00	0.000
0.5	0.11	30	0.89	0.01	0.021
1	0.11	60	0.89	0.01	0.021
1.5	0.12	90	0.88	0.02	0.042
2	0.13	120	0.87	0.03	0.062
2.5	0.13	150	0.87	0.03	0.062
3	0.14	180	0.86	0.04	0.083
3.5	0.16	210	0.84	0.06	0.125
4	0.17	240	0.83	0.07	0.146
4.5	0.18	270	0.82	0.08	0.166
5	0.19	300	0.81	0.09	0.187
6	0.19	360	0.81	0.09	0.187
7	0.2	420	0.80	0.10	0.208
8	0.22	480	0.78	0.12	0.250
9	0.23	540	0.77	0.13	0.270
10	0.25	600	0.75	0.15	0.312
11	0.26	660	0.74	0.16	0.333
12	0.27	720	0.73	0.17	0.354
13	0.29	780	0.71	0.19	0.395
14	0.3	840	0.70	0.20	0.416
15	0.31	900	0.69	0.21	0.437
20	0.37	1200	0.63	0.27	0.562
25	0.42	1500	0.58	0.32	0.666
30	0.47	1800	0.53	0.37	0.770
40	0.56	2400	0.44	0.46	0.957
50	0.60	3000	0.40	0.50	1.040
60	0.71	3600	0.29	0.61	1.269
80	0.93	4800	0.07	0.83	1.726

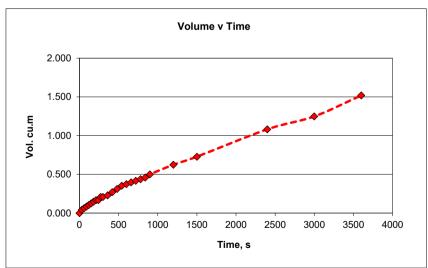




NOTES: See SW3/11 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/11				02/12/2016
				d, m	1	
l, m	1.6	b, m	1.3	d_eff, m	0.80	
l_base, m	1.6			d_act, m	0.73	
l eff, m	1.6					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.2	0	0.80	0.00	0.000
0.5	0.22	30	0.78	0.02	0.042
1	0.23	60	0.77	0.03	0.062
1.5	0.24	90	0.76	0.04	0.083
2	0.25	120	0.75	0.05	0.104
2.5	0.26	150	0.74	0.06	0.125
3	0.27	180	0.73	0.07	0.146
3.5	0.28	210	0.72	0.08	0.166
4	0.28	240	0.72	0.08	0.166
4.5	0.3	270	0.70	0.10	0.208
5	0.3	300	0.70	0.10	0.208
6	0.31	360	0.69	0.11	0.229
7	0.33	420	0.67	0.13	0.270
8	0.35	480	0.65	0.15	0.312
9	0.37	540	0.63	0.17	0.354
10	0.38	600	0.62	0.18	0.374
11	0.39	660	0.61	0.19	0.395
12	0.4	720	0.60	0.20	0.416
13	0.41	780	0.59	0.21	0.437
14	0.42	840	0.58	0.22	0.458
15	0.44	900	0.56	0.24	0.499
20	0.5	1200	0.50	0.30	0.624
25	0.55	1500	0.45	0.35	0.728
40	0.72	2400	0.28	0.52	1.082
50	0.80	3000	0.20	0.60	1.248
60	0.93	3600	0.07	0.73	1.518


NOTES:

See SW3/11 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 3		SW3/11				02/12/2016
				d, m	1	
l, m	1.6	b, m	1.3	d eff, m	0.80	
I base, m	1.6			d act, m	0.73	
L eff m	16					

Time a main	Measure,	Time	Depth	Fall	Valuma
Time, min	m bgl	Time, sec	water, m	Fall, m	Volume
0	0.2	0	0.80	0.00	0.000
0.5	0.22	30	0.78	0.02	0.042
1	0.23	60	0.77	0.03	0.062
1.5	0.24	90	0.76	0.04	0.083
2	0.25	120	0.75	0.05	0.104
2.5	0.26	150	0.74	0.06	0.125
3	0.27	180	0.73	0.07	0.146
3.5	0.28	210	0.72	0.08	0.166
4	0.28	240	0.72	0.08	0.166
4.5	0.3	270	0.70	0.10	0.208
5	0.3	300	0.70	0.10	0.208
6	0.31	360	0.69	0.11	0.229
7	0.33	420	0.67	0.13	0.270
8	0.35	480	0.65	0.15	0.312
9	0.37	540	0.63	0.17	0.354
10	0.38	600	0.62	0.18	0.374
11	0.39	660	0.61	0.19	0.395
12	0.4	720	0.60	0.20	0.416
13	0.41	780	0.59	0.21	0.437
14	0.42	840	0.58	0.22	0.458
15	0.44	900	0.56	0.24	0.499
20	0.5	1200	0.50	0.30	0.624
25	0.55	1500	0.45	0.35	0.728
40	0.72	2400	0.28	0.52	1.082
50	0.80	3000	0.20	0.60	1.248
60	0.93	3600	0.07	0.73	1.518

Area	2.08 m^2		
50% Area_	4.4 m^2	$V_{p75-25\ theory}$ volume	0.832 m^3
50% Area_	4.197 m^2	V _{p 75 - 25 actu} volume	0.7592 m^3
		t _{p 75-25 actual} time	2384.00 s
	Infiltration	n Coefficient f	7.58771E-05 ms^-1

NOTES:

See SW3/11 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-11

Project Project No Engineer

N6 GCTP No P16185 r Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-12 Sheet 1 of 1

Project No. Co-ords:532982.03 - 728221.91 Project N6 GCTP Phase 3 Name: P16185

Level: 30.50

1.90

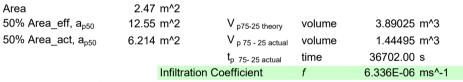
Date 01/12/2016

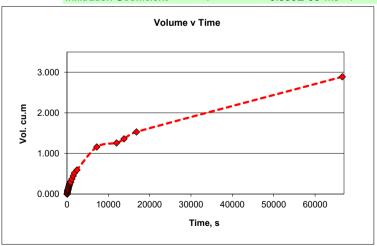
Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

Client: Arup Depth:


Logged


	: Arup				ı		3.50 DMC	;
Strike		les & In Sit		Depth	Level	Legend	Stratum Description	
Sti	Depth	Туре	Results	(m)	(m)	Logona		
				0.40	30.10		Topsoil. Soft, brown, slightly gravelly CLAY. Gravel fine to coarse.	
	1.00 - 2.00	В		0.80	29.70		Firm, grey, slightly sandy gravelly SILT with high cobble content. Sand is fine to coarse. Gravel is fine to coarse. Cobbles are sub-angular, Limestone lithology.	
	2.00 - 3.00	В					2.00 - 3.00m: Decreasing gravel content.	
				3.50	27.00		End of Pit at 3.50m	
bilit	u: Good					Granad	rator: Al	
ability ant:	y: Good. 14T track mad	chine				Groundw	vater: None encounterted.	

Remarks: Trial pit terminated at 3.50m bgl, on bedrock. Soakaway test carried out (BRE 365).

Test 1		SW3/12			01/12/2		
				d, m	3.5		
l, m	1.9	b, m	1.3	d_eff, m	3.15		
l_base, m	1.9			d_act, m	1.17		
I eff, m	1.9						

Time a main	Measure, m	Time coe	Depth	Fall m	Valuma
Time, min	bgl	Time, sec	water, m	Fall, m	Volume
0	0.35	0	3.15	0.00	0.000
0.5	0.35	30	3.15	0.00	0.000
1	0.35	60	3.15	0.00	0.000
1.5	0.36	90	3.14	0.01	0.025
2	0.37	120	3.13	0.02	0.049
2.5	0.38	150	3.12	0.03	0.074
3	0.39	180	3.11	0.04	0.099
3.5	0.39	210	3.11	0.04	0.099
4	0.39	240	3.11	0.04	0.099
4.5	0.39	270	3.11	0.04	0.099
5	0.4	300	3.10	0.05	0.124
6	0.41	360	3.09	0.06	0.148
7	0.42	420	3.08	0.07	0.173
8	0.43	480	3.07	0.08	0.198
9	0.44	540	3.06	0.09	0.222
10	0.45	600	3.05	0.10	0.247
11	0.45	660	3.05	0.10	0.247
12	0.46	720	3.04	0.11	0.272
13	0.47	780	3.03	0.12	0.296
14	0.47	840	3.03	0.12	0.296
15	0.47	900	3.03	0.12	0.296
20	0.5	1200	3.00	0.15	0.371
25	0.53	1500	2.97	0.18	0.445
30	0.56	1800	2.94	0.21	0.519
40	0.59	2400	2.91	0.24	0.593
120	0.82	7200	2.68	0.47	1.161
200	0.86	12000	2.64	0.51	1.260
230	0.90	13800	2.60	0.55	1.359
280	0.97	16800	2.53	0.62	1.531
1110	1.52	66600	1.98	1.17	2.890

NOTES:

See SW3/12 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-12

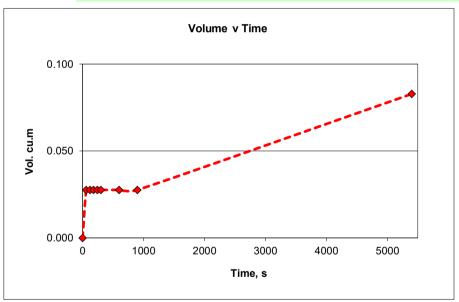
Project Project No Engineer

Project N6 GCTP
Project No P16185
Engineer Arup

pgl	priority geotechnical				Te Fa:	l: 021 463 x: 021 463			Trial Pit No SW03-13 Sheet 1 of 1	
Proje	ot No com	DI 0		Proj	ect No.		Co-ords: 533661.00 - 728	Date		
Name		Phase 3		P16	185		Level: 56.48		06/12/2	
Locati	on: Galway C	ity, Co. Ga	alway				Dimensions (m):	2.30	Scale 1:25	
Client	: Arup						Depth: 3.80		Logge	ed
ter ke	Samp	oles & In Situ	Testing	Depth	Level	Lagand		Description	DIVIC	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Topsoil.	Description		
				1.20	55.88 55.28		Firm, grey, sandy gravelly S content. Sand is fine to coar sub-angular to rounded. Col rounded, Limestone litholog Firm to stiff, slightly sandy g content, low boulder content Cobbles are sub-rounded to	rse. Gravel is fine to bbles are angular to y. rravelly SILT with hit. t. Sand is fine to controlled.	gh cobble arse.	1 -
	1.50 - 2.50	В					lithology. Boulders are 200m rounded, Limestone litholog		sub-	3 -
				3.80	52.68		End of P	Pit at 3.80m		4

Groundwater: None encountered.

5 -

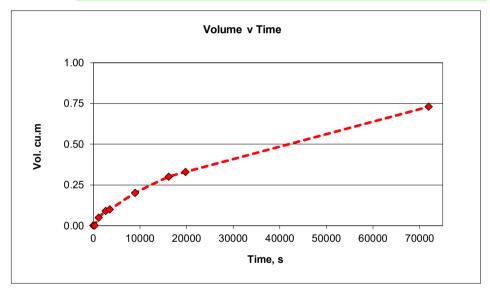

Stability: Good.
Plant: 14T track machine.
Backfill: Arisings.

Remarks: Soakaway pit terminated at 3.80m bgl. Soakaway test carried out (BRE 365).

Test 1		SW3/13		06/12/		
				d, m	3.8	
l, m	2.3	b, m	1.2	d eff, m	2.50	
l_base, m	2.3			d_act, m	0.03	
l eff. m	2.3					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	1.3	0	2.50	0.00	0.000
1	1.31	60	2.49	0.01	0.028
2	1.31	120	2.49	0.01	0.028
3	1.31	180	2.49	0.01	0.028
4	1.31	240	2.49	0.01	0.028
5	1.31	300	2.49	0.01	0.028
10	1.31	600	2.49	0.01	0.028
15	1.31	900	2.49	0.01	0.028
90	1.33	5400	2.47	0.03	0.083

Area	2.76 m^2			
50% Area_eff, a _{p50}	11.51 m^2	$V_{ m p75-25\ theory}$	volume	3.45 m^3
50% Area_act, a _{p50}	2.865 m^2	V _{p 75 - 25} actual	volume	0.0414 m^3
		t _{p 75- 25} actual	time	3600.00 s
	Infiltration	Coefficient	f	4.014E-06 ms^-1


NOTES:

See SW3/13 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Test 2		SW3/13				06/12/2016
				d, m	3.8	
l, m	2.3	b, m	1.2	d_eff, m	3.33	
l_base, m	2.3			d_act, m	0.73	
l eff. m	2.3			_		

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.47	0	3.33	0.00	0.000
5	0.47	300	3.33	0.00	0.000
20	0.52	1200	3.28	0.05	0.138
45	0.56	2700	3.24	0.09	0.248
60	0.57	3600	3.23	0.10	0.276
150	0.67	9000	3.13	0.20	0.552
270	0.77	16200	3.03	0.30	0.828
330	0.8	19800	3.00	0.33	0.911
1200	1.2	72000	2.60	0.73	2.015

Area	2.76 m^2		
50% Area_ef	14.415 m^2	V _{p75-25 theory} volume	4.5954 m^3
50% Area_ac	5.315 m^2	V _{p 75 - 25 actu} volume	1.0074 m^3
		t _{p 75-25 actual} time	39960.00 s
	Infiltration	Coefficient f	4.74322E-06 ms^-1

NOTES:

See SW3/13 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-13

Project Project No Engineer

Project N6 GCTP Project No P16185 Engineer Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-14 Sheet 1 of 1

Project No. Co-ords:533110.49 - 728555.83 Project N6 GCTP Phase 3 Name: P16185

Level: 21.68

1.20

08/12/2016

Date

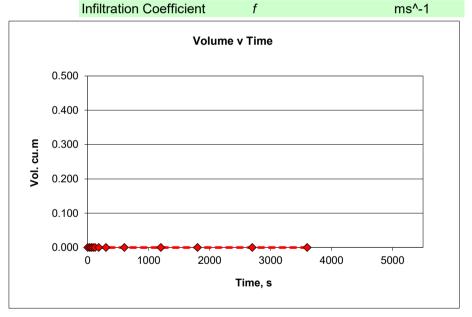
Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

3.50

lient	lient: Arup				Depth: 07		Logged DMC				
Strike		ples & In Situ		Depth	Level	Legend	Stratum Description				
ß	Depth	Туре	Results	(m)	(m)	×///×///					
							Topsoil.				
				0.20	21.48	××××	Soft, grey, slightly sandy SILT.				
				0.40	21.28	XXXX					
	0.50 - 1.50	В		0.40	21.20		Soft, brown, slightly sandy slightly gravis is fine to coarse and angular.	elly CLAY. Gravel			
	0.50 - 1.50	B D					io into to occaroo and angular.				
				1.70	19.98		Soft to firm, light grey, slightly sandy C	LAY Sand is fine			
							to medium.	2 94.14 19 11.19			
	2.00 - 2.50	_P									
	2.00 - 2.50	B D									
	3.00 - 3.50	R		2.90	18.78	× × × //	Dark grey black, slightly gravelly slight SILT.	ly sandy peaty			
	3.00 - 3.50	B D				× × × ′′′′′′′ × ′′′′′ × × × ×	SILI.				
						X X X					
						X X X W					
						× × × × × × × × × × × × × × × × × × ×					
						X X X X					
						\times $^{\prime\prime}$ \times \times $^{\prime\prime}$					
						\times \times \times \times					
	4.00 - 4.50	В				× * * * * * * * * * * * * * * * * * * *					
	4.00 - 4.50	D				× // × × //					
						X .W X X .W					
						X 11 X X 1					
				4.50	17.18	X 'm' X X+)					
				4.50	17.10		End of Pit at 4.50m				
	y: Good.						vater: None encountered.				


Plant: 14T track Backfill: Arisings.

Remarks: Soakaway pit terminated at required depth of 4.50m bgl. Soakaway test carried out (BRE 365).

Test 1		SW3/14				08/12/2016
				d, m	4.5	
l, m	3.5	b, m	1.2	d_eff, m	0.86	
l_base, m	3.5			d_act, m	0.00	
l eff, m	3.5			_		

ა.5					
Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	3.64	0	0.86	0.00	0.000
0.5	3.64	30	0.86	0.00	0.000
1	3.64	60	0.86	0.00	0.000
1.5	3.64	90	0.86	0.00	0.000
2	3.64	120	0.86	0.00	0.000
3	3.64	180	0.86	0.00	0.000
5	3.64	300	0.86	0.00	0.000
10	3.64	600	0.86	0.00	0.000
20	3.64	1200	0.86	0.00	0.000
30	3.64	1800	0.86	0.00	0.000
45	3.64	2700	0.86	0.00	0.000
60	3.64	3600	0.86	0.00	0.000

Area	4.2 m^2			
50% Area_eff, a _{p50}	8.242 m^2	$V_{p75-25\ theory}$	volume	1.806 m^3
50% Area_act, a _{p50}	m^2	V _{p 75 - 25 actual}	volume	m^3
		t _{p 75-25 actual}	time	s

NOTES:

See SW3/15 log for detailed soil strata details: slightly gravelly sandy CLAY/SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate not applicable.

Pit wall collapsed overnight. Final reading disregarded.

Number: SW03-14

Project Project No Engineer

Number: SW03-14

Project N6 GCTP
Project N0 P16185
Engineer Arup

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-15 Sheet 1 of 1

Project No. Co-ords:533069.52 - 728487.25 Project N6 GCTP Phase 3 Name: P16185

Level: 22.73

20

Date 08/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

3.80 Scale 1:25

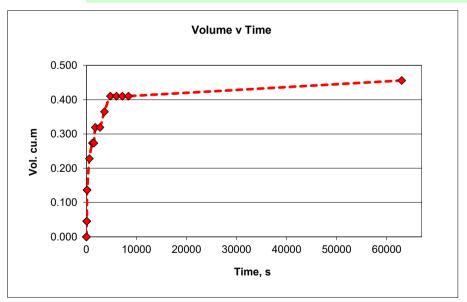
Depth: Logged Client: Arup 4.50 DMC Samples & In Situ Testing Water Strike Depth Level Legend Stratum Description (m) (m) Depth Results Type Topsoil. 0.20 22 53 Soft, brown, slightly gravelly slightly sandy SILT. Sand is fine to coarse. 0.50 - 1.00 В 0.50 - 1.00 D 1.10 21.63 Stiff, light grey brown, slightly gravelly very sandy SILT with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, sub-angular to sub-rounded. Cobbles are 63mm to 200mm dia, sub-rounded, Limestone lithology.

Cobble content increases with depth. 1.50 - 2.00 В 1.50 - 2.00 2 2.50 - 3.00 В 2.50 20.23 Light grey brown, very sandy very silty GRAVEL with 2.50 - 3.00 D 3 3.50 - 4.50 3.50 - 4.50 3.50 19.23 B D Light grey brown, slightly gravelly slightly sandy SILT with cobble content. 4 4.50 18.23 End of Pit at 4.50m 5 Stability: Good. Groundwater: None encountered.

Plant:

14T track machine.

Backfill: Arisings.


Remarks: Soakaway pit terminated at required depth of 4.50m bgl. Soakaway test carried out (BRE 365).

P16185 N6 GCTP

Test 1		SW3/15				08/12/2016
				d, m	4.5	
I, m	3.8	b, m	1.2	d_eff, m	1.05	
l_base, m	3.8			d_act, m	0.10	
l eff, m	3.8			_		

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	3.45	0	1.05	0.00	0.000
0.5	3.45	30	1.05	0.00	0.000
1	3.46	60	1.04	0.01	0.046
1.5	3.46	90	1.04	0.01	0.046
2	3.48	120	1.02	0.03	0.137
2.5	3.48	150	1.02	0.03	0.137
10	3.5	600	1.00	0.05	0.228
20	3.51	1200	0.99	0.06	0.274
25	3.51	1500	0.99	0.06	0.274
30	3.52	1800	0.98	0.07	0.319
45	3.52	2700	0.98	0.07	0.319
60	3.53	3600	0.97	0.08	0.365
80	3.54	4800	0.96	0.09	0.410
100	3.54	6000	0.96	0.09	0.410
120	3.54	7200	0.96	0.09	0.410
140	3.54	8400	0.96	0.09	0.410
1050	3.55	63000	0.95	0.10	0.456

Area	4.56	m^2			
50% Area_eff, a _{p50}	9.81	m^2	V _{p75-25 theory}	volume	2.394 m^3
50% Area_act, a _{p50}	5.06	m^2	V _{p 75 - 25 actual}	volume	0.228 m^3
			t _{p 75-25 actual}	time	3082.00 s
		Infiltration Co	efficient	f	1.462E-05 ms^-1

NOTES: See SW3/15 log for detailed soil strata details: slightly gravelly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-15

Project Project No Engineer

Number: SW03-15

Project Project No Engineer

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-16 Sheet 1 of 1

Project No. Co-ords:533014.93 - 728441.91 Project N6 GCTP Phase 3 Name: P16185

Level: 19.56

Date 08/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

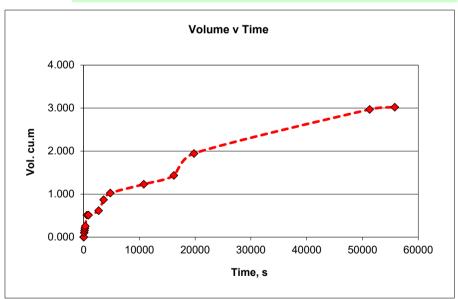
Scale 1:25

1.60 Depth:

3.20

Client: Arup						Depth: 4.30	DM	Logged DMC		
Strike	Samp	oles & In Situ	ı Testing	Depth	Level	Legend	Stratum Description	·		
Str	Depth	Туре	Results	(m)	(m)					
	0.50, 4.50	В		0.30	19.26		Topsoil. Soft to firm, light grey cream, CLAY.			
	0.50 - 1.50 0.50 - 1.50	B D								
	1.50 - 2.90 1.50 - 2.90	B D		1.50	18.06	* * * * * * * * * * * * * * * * * * *	Stiff, dark grey, slightly sandy gravelly C content. Sand is fine to coarse. Gravel i sub-angular to sub-rounded.	CLAY with cobble s fine to coarse,		
				2.90	16.66					
	3.00 - 4.00 3.00 - 4.00	B D		2.90	10.00		Firm, yellowish brown, very sandy very medium cobble content. Sand is fine to fine to coarse, sub-angular to sub-round 63mm to 200mm dia sub-rounded, Lime Cobble content increases with depth.	ded. Cobbles are		
				4.30	15.26		End of Pit at 4.30m			

Plant: 14T track Backfill: Arisings.


Remarks: Soakaway pit terminated at 4.30m bgl. Soakaway test carried out (BRE 365).

P16185 N6 GCTP

Test 1		SW3/16				08/12/2016
				d, m	4.3	
l, m	3.2	b, m	1.6	d_eff, m	1.40	
l_base, m	3.2			d_act, m	0.59	
l eff m	3.2					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	2.9	0	1.40	0.00	0.000
1	2.9	60	1.40	0.00	0.000
2	2.92	120	1.38	0.02	0.102
3	2.93	180	1.37	0.03	0.154
4	2.94	240	1.36	0.04	0.205
5	2.95	300	1.35	0.05	0.256
10	3	600	1.30	0.10	0.512
15	3	900	1.30	0.10	0.512
45	3.02	2700	1.28	0.12	0.614
60	3.07	3600	1.23	0.17	0.870
80	3.1	4800	1.20	0.20	1.024
180	3.14	10800	1.16	0.24	1.229
270	3.18	16200	1.12	0.28	1.434
330	3.28	19800	1.02	0.38	1.946
855	3.48	51300	0.82	0.58	2.970
930	3.49	55800	0.81	0.59	3.021

Area 5.12 m² 50% Area_eff, a_{p50} 11.84 m^2 $V_{p75-25 \ theory}$ volume 3.584 m^3 50% Area_act, a_{p50} 7.952 m^2 V _{p 75 - 25 actual} volume 1.5104 m^3 25767.00 s t_{p 75-25 actual} time 7.371E-06 ms^-1 Infiltration Coefficient

NOTES:

See SW3/16 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-16

Project Project No Engineer

Project N6 GCTP
Project No P16185
Engineer Arup

Project

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-17

Sheet 1 of 1 Project No. **Co-ords:**532695.57 - 728363.07 Date

N6 GCTP Phase 3 Name: P16185 **Level:** 16.35

07/12/2016 1.70 Scale

Location: Galway City, Co. Galway

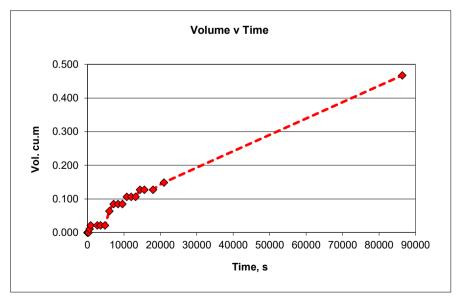
Dimensions (m):

1:25 Logged

Client	: Arup						Depth: 7.60	Logge DMC	ed C
Water Strike		oles & In Sit		Depth	Level	Legend	Stratum Description		
≥ to	Depth	Туре	Results	(m)	(m)	\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Topsoil.		1
	0.20 - 0.40 0.20 - 0.40	B D		0.15	16.20		Soft, grey brown, slightly gravelly sandy Cl fine and sub-angular.	AY. Gravel is	_
	0.50 - 1.50 0.50 - 1.50	B D		0.40	15.95		Soft to firm, brown, CLAY.		
	0.30 - 1.30								
									1 -
				1.60	14.75		1.50 - 1.60: Grey in colour. End of Pit at 1.60m		
									2 -
									-
									3 -
									4 -
									5 -
Stabilit	/: Good.					Groundy	vater: None encountered.		

Plant: 14T track machine.

Backfill: Arisings.


Remarks: Soakaway pit terminated at required depth of 1.60m bgl. Soakaway test carried out (BRE 365).

P16185 N6 GCTP

Test 1		SW3/17				07/12/2016
				d, m	1.6	
l, m	1.7	b, m	1.25	d_eff, m	1.50	
l_base, m	1.7			d_act, m	0.22	
l eff. m	1.7					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	0.1	0	1.50	0.00	0.000
1	0.1	60	1.50	0.00	0.000
5	0.1	300	1.50	0.00	0.000
10	0.105	600	1.50	0.00	0.011
15	0.11	900	1.49	0.01	0.021
45	0.11	2700	1.49	0.01	0.021
60	0.11	3600	1.49	0.01	0.021
80	0.11	4800	1.49	0.01	0.021
100	0.13	6000	1.47	0.03	0.064
120	0.14	7200	1.46	0.04	0.085
140	0.14	8400	1.46	0.04	0.085
160	0.14	9600	1.46	0.04	0.085
180	0.15	10800	1.45	0.05	0.106
200	0.15	12000	1.45	0.05	0.106
220	0.15	13200	1.45	0.05	0.106
240	0.16	14400	1.44	0.06	0.128
260	0.16	15600	1.44	0.06	0.128
300	0.16	18000	1.44	0.06	0.128
350	0.17	21000	1.43	0.07	0.149
1440	0.32	86400	1.28	0.22	0.468

2.125 m^2 Area 50% Area_eff, a_{p50} 6.55 m² $V_{p75-25 theory}$ volume 1.59375 m^3 50% Area_act, a_{p50} 0.23375 m³ 2.774 m^2 V _{p 75 - 25 actual} volume time 48342.00 s t_{p 75-25 actual} Infiltration Coefficient 1.743E-06 ms^-1

NOTES:

See SW3/17 log for detailed soil strata details: slightly gravelly SILT/CLAY No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-17

Project Project No Engineer

Project

Name:

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie

Trial Pit No SW03-18 Sheet 1 of 1

Project No. **Co-ords:**532711.15 - 728444.80 N6 GCTP Phase 3

P16185

Level: 16.07

Date 07/12/2016

Location: Galway City, Co. Galway

Dimensions (m):

Scale 1:25

Client: Arup Depth:

Logged

1.80

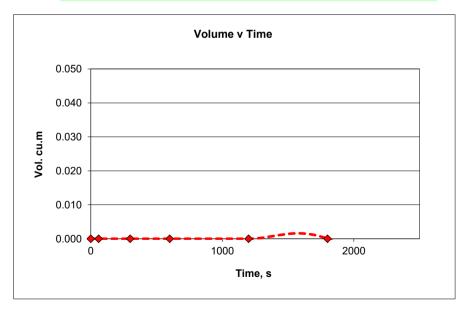
ê	Samples & In Situ Testing			Depth	Level		4.50 DMC	-
Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.50 - 1.00 0.50 - 1.00	B D		0.20	15.87		Topsoil. Soft to firm, slightly sandy slightly gravelly CLAY. Gravel is fine to medium and sub-angular.	
	1.50 - 2.00 1.50 - 2.00	B D		1.40	14.67	**************************************	Soft, light grey, slightly sandy gravelly SILT. Sand is fine to coarse. Gravel is fine to coarse and sub-angular.	-
	2.00 - 2.50 2.00 - 2.50	B D		2.00	14.07		Soft to firm, grey brown, slightly gravelly slightly sandy CLAY. 2.00 - 3.50m: Thin bands of fine sand (5mm).	-
	3.00 - 3.50 3.00 - 3.50	B D						
	3.50 - 4.50 3.50 - 4.50	B D		3.50	12.57		Soft, blue, CLAY.	
				4.50	11.57		End of Pit at 4.50m	-
	y: Good.						/ater: None encountered.	

14T track machine. Plant:

Backfill: Arisings.

Remarks: Soakaway pit terminated at required depth of 4.50m bgl. Soakaway test carried out (BRE 365).

P16185


N6 GCTP

Test 1		SW3/18				07/12/2016
				d, m	4.5	
l, m	1.8	b, m	1.2	d_eff, m	1.02	
l_base, m	1.8			d_act, m		
l_eff, m	1.8					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume
0	3.48	0	1.02	0.00	0.000
1	3.48	60	1.02	0.00	0.000
5	3.48	300	1.02	0.00	0.000
10	3.48	600	1.02	0.00	0.000
20	3.48	1200	1.02	0.00	0.000
30	3.48	1800	1.02	0.00	0.000
45	3.47	2700	1.03	-0.01	-0.022
60	3.47	3600	1.03	-0.01	-0.022
80	3.47	4800	1.03	-0.01	-0.022
100	3.47	6000	1.03	-0.01	-0.022
120	3.47	7200	1.03	-0.01	-0.022
140	3.47	8400	1.03	-0.01	-0.022
160	3.47	9600	1.03	-0.01	-0.022
180	3.47	10800	1.03	-0.01	-0.022
200	3.47	12000	1.03	-0.01	-0.022
220	3.47	13200	1.03	-0.01	-0.022
240	3.47	14400	1.03	-0.01	-0.022
1200	3.47	72000	1.03	-0.01	-0.022

Area 50% Area_eff, a_{p50} 50% Area_act, a_{p50}

2.16 m^2			
5.22 m^2	$V_{p75-25 theory}$	volume	1.1016 m^3
m^2	V _{p 75 - 25 actual}	volume	m^3
	t _{p 75- 25 actual}	time	S
Infiltration	n Coefficient	f	ms^-1

NOTES:

See SW3/18 log for detailed soil strata details: slightly gravelly slightly sandy SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate not applicable.

Number: SW03-18

Project Project No Engineer

Number: SW03-18

Project Project No Engineer

Backfill: Arisings.

Remarks: Soakaway pit terminated at 0.35m bgl on bedrock. Soakaway test carried out (BRE 365).

Priority Geotechnical Ltd. Tel: 021 4631600 Fax: 021 4638690 www.prioritygeotechnical.ie Trial Pit No **SW03-19** Sheet 1 of 1

Project No. Name: Project No. Project No. P16185

Co-ords:531215.03 - 728480.43

0.

Level: 17.29

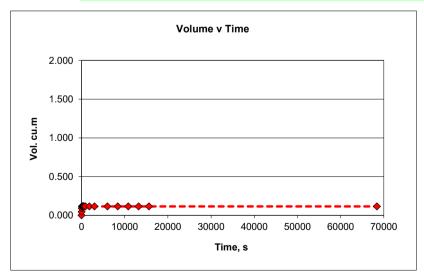
Date 22/12/2016 Scale

Location: Galway City, Co. Galway

Dimensions (m):

2.30

1:25 Logged


lient	:: Arup						Depth: — — — — — — — — — — — — — — — — — — —	Lo	gged VT
Strike	Samp	oles & In Situ	ı Testing	Depth	Level				V 1
Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.20 - 0.35 0.20 - 0.35	B D		0.20 0.35	17.09 16.94	**************************************	Topsoil. Soft, brown, slightly gravelly slight Light grey to light brown, very silty very s with high cobble content and medium bo Sand is fine to coarse. Gravel is fine to coarben sub-angular, Limestone lithology. Cobble sub-rounded, 3-200mm dia. Limestone lithology. End of Pit at 0.35m	andy GRAVEL ulder content. parse, angular to s are angular to thology.	
									1
									2
									3
									4
ahili.	y: Good.					Count	/ater: None encountered.		5

P16185 N6 GCTP

Test 1		SW3/19				12/12/2016
				d, m	0.35	
l, m	2.3	b, m	1	d_eff, m	0.27	
l_base, m	2.3			d_act, m	0.05	
l_eff, m	2.3					

Time, min	Measure, m bgl	Time, sec	Depth water, m	Fall, m	Volume	
0	0.08	0	0.27	0.00	0.000	
0.5	0.1	30	0.25	0.02	0.046	
1	0.12	60	0.23	0.04	0.092	
1.5	0.13	90	0.22	0.05	0.115	
2	0.13	120	0.22	0.05	0.115	
2.5	0.13	150	0.22	0.05	0.115	
3	0.13	180	0.22	0.05	0.115	
3.5	0.13	210	0.22	0.05	0.115	
4	0.13	240	0.22	0.05	0.115	
4.5	0.13	270	0.22	0.05	0.115	
5	0.13	300	0.22	0.05	0.115	
6	0.13	360	0.22	0.05	0.115	
7	0.13	420	0.22	0.05	0.115	
8	0.13	480	0.22	0.05	0.115	
9	0.13	540	0.22	0.05	0.115	
10	0.13	600	0.22	0.05	0.115	
15	0.13	900	0.22	0.05	0.115	
30	0.13	1800	0.22	0.05	0.115	
50	0.13	3000	0.22	0.05	0.115	
100	0.13	6000	0.22	0.05	0.115	
140	0.13	8400	0.22	0.05	0.115	
180	0.13	10800	0.22	0.05	0.115	
220	0.13	13200	0.22	0.05	0.115	
260	0.13	15600	0.22	0.05	0.115	
1140	0.13	68400	0.22	0.05	0.115	

2.3 m² Area 50% Area_eff, 3.191 m^2 $V_{p75-25 \, theory}$ volume 0.3105 m³ 50% Area_act, 2.465 m^2 V _{p 75 - 25 actual} volume 0.0575 m^3 time 36.60 s t_{p 75-25 actual} Infiltration Coefficient 0.0006373 ms^-1

NOTES:

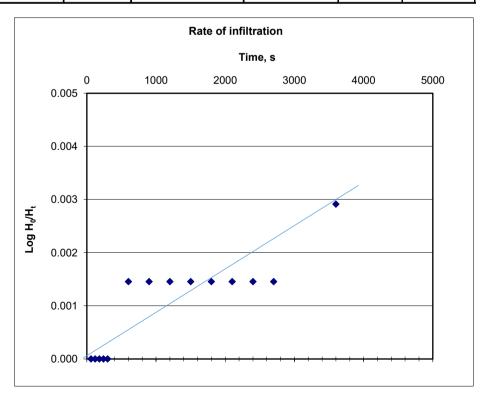
See SW3/19 log for detailed soil strata details: slightly sandy gravelly SILT No groundwater was encountered, pit assumed unsaturated. Infiltration rate calculated over actual fall.

Number: SW03-19

Project Project No Engineer

P16185 Rising head permeability test

Location Monitoring well BH ID BH-MW64 $H_{w'}H_o$


Casing diameter 200 mm
Casing depth 8.3 m
Borehole depth 8.3 m
Groundwater level 4.10 mbgl

Date 28/03/2017

Min	Sec	depth, m bgl	vol, cu.m	H _t	log H₀/Ht
1	60	7.090	0.22263	2.990	0.000
2	120	7.090	0.22263	2.990	0.000
3	180	7.090	0.22263	2.990	0.000
4	240	7.090	0.22263	2.990	0.000
5	300	7.090	0.22263	2.990	0.000
10	600	7.080	0.22231	2.980	0.001
15	900	7.080	0.22231	2.980	0.001
20	1200	7.080	0.22231	2.980	0.001
25	1500	7.080	0.22231	2.980	0.001
30	1800	7.080	0.22231	2.980	0.001
35	2100	7.080	0.22231	2.980	0.001
40	2400	7.080	0.22231	2.980	0.001
45	2700	7.080	0.22231	2.980	0.001
60	3600	7.070	0.22200	2.970	0.003
90	5400	7.060	0.22168	2.960	0.004
120	7200	7.050	0.22137	2.950	0.006
150	9000	7.045	0.22121	2.945	0.007
180	10800	7.035	0.22090	2.935	0.008
210	12600	7.030	0.22074	2.930	0.009
240	14400	7.025	0.22059	2.925	0.010

k_{mean} 1.20E-08 ms⁻¹ k_H = k_V

2.99

Flow Rate (L / min)	Time (min)	Pump Well	MW 3/63	MW 3/64	Note
0	0	4.52	7.22	5.09	15 mins spent getting accurate 1 L/min reading
1 L / min	0.5				
	1	4.57	7.22	5.09	
	1.5				
	2	4.57	7.22	5.09	
	2.5				
	3	4.5	7.22	5.09	
	3.5				
	4	4.65	7.22	5.09	
	4.5				
	5	4.75	7.22	5.09	
	5.5				
	6	4.77	7.22	5.09	
	6.5	4.79	7.22	5.09	
	7	4.81	7.22	5.09	
	7.5	4.83	7.22	5.09	
	8	4.85	7.22	5.09	
	8.5	4.87	7.22	5.09	
	9	4.88	7.22	5.09	
	9.5	4.89	7.22	5.09	
	10	4.9	7.22	5.09	
	12	4.96	7.22	5.09	
	14	5.03	7.22	5.09	
	16	5.1	7.22	5.09	Pump stopped pumping due to height of hose
	18	5.11	7.22	5.09	
	20	5.11	7.22	5.09	
	25		7.22	5.09	
	30	5.28	7.22	5.09	
	35	5.475	7.22	5.09	
	40	5.58	7.22	5.095	
	45	5.67	7.22	5.1	
	50	5.75	7.22	5.1	
	55	5.81	7.22	5.1	
	60	5.88	7.22	5.1	

Depth before data loggers removed-

PW 4.52 m MW 3/63 7.22m MW 3/64 5.09m

N.B all levels are from top of standpipe.

Top of standpipe to groundlevel, PW- 0.49m

MW 3/63- 0.85m MW 3/64- 0.96m

Pump installed at 15m below top of standpipe on pump well (PW)

		Pump Well	MW 3/63		
0	60 mins	5.88	7.22	5.1	2 mins spent getting accurate 2 L/min reading
2 L / min	0.5	5.87			
	1	5.89	7.22	5.1	
	1.5	5.93			
	2	5.99	7.22	5.1	
	2.5	6.02			
	3	6.08	7.22	5.1	
	3.5	6.08			
	4	6.1	7.22	5.1	
	4.5	6.11			
	5	6.12	7.22	5.1	
	5.5	6.16			
	6	6.19	7.22	5.1	
	6.5	6.215	7.22	5.1	
	7	6.24	7.22	5.1	
	7.5	6.27	7.22	5.1	
	8	6.29	7.22	5.1	
	8.5	6.32	7.22	5.1	
	9	6.345	7.22	5.1	
	9.5	6.37	7.22	5.1	
	10	6.4	7.22	5.1	
	12	6.49	7.22	5.1	
	14	6.58	7.22	5.1	
	16	6.665	7.22	5.1	
	18	6.77	7.22	5.1	
	20	6.85	7.22	5.1	
	25	7.045	7.22	5.1	
	30	7.23	7.22	5.1	
	35	7.32	7.22	5.1	
	40	7.455	7.22	5.1	
	45	7.69	7.22	5.1	
	50	7.915	7.22	5.1	
	55	8.1	7.22	5.1	
	60	8.26	7.22	5.1	

Depth before data loggers removed-

PW 4.52 m MW 3/63 7.22m MW 3/64 5.09m

N.B all levels are from top of standpipe.

Top of standpipe to groundlevel, PW- 0.49 m

Flow Rate (L / min)	Time (min)	Pump Well	MW 3/63	MW 3/64	Note
0	120 mins	8.26	7.22	5.1	5 mins spent getting accurate 3 L/min reading
3 L / min	0.5				
	1		7.22	5.1	
	1.5	8.42			
	2	8.45	7.22	5.1	
	2.5	8.5			
	3	8.55	7.22	5.1	
	3.5	8.59			
	4	8.635	7.22	5.1	
	4.5	8.73			
	5	8.735	7.22	5.1	
	5.5	8.76			
	6	8.8	7.22	5.1	
	6.5	8.84	7.22	5.1	
	7	8.89	7.22	5.1	
	7.5	8.93	7.22	5.1	
	8	8.97	7.22	5.1	
	8.5	9	7.22	5.1	
	9	9.05	7.22	5.1	
	9.5	9.09	7.22	5.1	
	10	9.12	7.22	5.1	
	12	9.295	7.22	5.1	
	14	9.47	7.22	5.1	
	16	9.63	7.22	5.1	
	18	9.76	7.22	5.1	
	20	9.91	7.22	5.1	
	25	10.09	7.22	5.1	
	30	10.31	7.22	5.1	
	35	10.67	7.225	5.1	
	40	10.94	7.225	5.1	
	45		7.225	5.1	
	50	11.51	7.225	5.1	
	55	11.785	7.225	5.1	
	60	12.06	7.225	5.1	

Depth before data loggers removed-

PW 4.52 m MW 3/63 7.22m MW 3/64 5.09m

N.B all levels are from top of standpipe.

Top of standpipe to groundlevel, PW- 0.49 m

Flow Rate (L / min)		Pump Well	MW 3/63		
0	180 mins	12.06	7.225	5.1	5 mins spent getting accurate 3.5 L/min reading
3.5 L /min	0.5	12.15			
	1	12.18	7.225	5.1	
	1.5	12.22			
	2	12.27	7.225	5.1	
	2.5	12.31			
	3	12.35	7.225	5.1	
	3.5	12.39			
	4	12.44	7.225	5.1	
	4.5	12.51			
	5	12.57	7.225	5.1	
	5.5				
	6		7.225	5.1	
	6.5	12.75	7.225	5.1	
	7	12.82	7.225	5.1	
	7.5	12.86	7.225	5.1	
	8	12.91	7.225	5.1	
	8.5	12.97	7.225	5.1	
	9	13.04	7.225	5.1	
	9.5	13.08	7.225	5.1	
	10	13.13	7.225	5.1	
	12	13.36	7.225	5.1	
	14	13.58	7.225	5.1	
	16	13.74	7.225	5.1	
	18	13.87	7.225	5.1	
	20	14.07	7.225	5.1	
	25	14.57	7.225	5.1	
	30	15.01	7.225	5.1	
	35				
	40				
	45				
	50				
	55				
	60				

Depth before data loggers removed-

PW 4.52 m MW 3/63 7.22m MW 3/64 5.09m

N.B all levels are from top of standpipe.

Top of standpipe to groundlevel, PW- 0.49 m

RECHARGE

Flow Rate (L / min)	Time (min)	Pump Well	MW 3/63	MW 3/64	Note
0	0	15.01		5.1	
	0.5	14.94			
	1	14.94	7.225	5.1	
	1.5	14.94			
	2	14.94	7.225	5.1	
	2.5	14.94			
	3	14.94	7.225	5.1	
	3.5	14.94			
	4	14.94	7.225	5.1	
	4.5	14.93			
	5	14.93	7.225	5.1	
	5.5	14.93			
	6	14.93	7.225	5.1	
	6.5	14.93	7.225	5.1	
	7	14.93	7.225	5.1	
	7.5	14.93	7.225	5.1	
	8	14.93	7.225	5.1	
	8.5	14.93	7.225	5.1	
	9	14.92	7.225	5.1	
	9.5	14.92	7.225	5.1	
	10	14.92	7.225	5.1	
	12	14.92	7.225	5.1	
	14	14.92	7.225	5.1	
	16	14.92	7.225	5.1	
	18	14.92	7.225	5.1	
	20	14.92		5.1	
	25	14.915	7.225	5.1	
	30	14.915	7.225	5.1	
	35	14.915	7.225	5.1	
	40	14.91	7.225	5.1	
	45	14.91	7.225	5.1	
	50	14.91	7.225	5.1	
	55	14.9	7.225	5.1	
	60	14.9	7.225	5.1	
	70	14.89		5.1	
	80	14.885	7.225	5.1	
	90	14.88	7.225	5.1	

Depth before data loggers removed-

PW 4.52 m MW 3/63 7.22m MW 3/64 5.09m

N.B all levels are from top of standpipe.

Top of standpipe to groundlevel, PW- 0.49m

KEY TO SYMBOLS - LABORATORY TEST RESULT

U Undisturbed Sample
P Piston Sample
TWS Thin Wall Sample
B Bulk Sample - Disturbed
D Jar Sample - Disturbed

W Water Sample pH Acidity/Alkalinity Index

SO₃ % - Total Sulphate Content (acid soluble)

SO₃ g/ltr - Water Soluble Sulphate (Water or 2:1 Aqueous Soil Extract)

+ Calcareous Reaction
Cl Chloride Content
Pl Plasticity Index

<425 % of material in sample passing 425 micron sieve

LL Liquid Limit
PL Plastic Limit
MC Water Content
NP Non Plastic
Yb Bulk Density
Yd Dry Density
Ps Particle Density

U/D Undrained/Drained Triaxial

U/C Unconsolidated/Consolidated Triaxial T/M Single Stage/Multistage Triaxial

100/38 Sample Diameter (mm)

REM Remoulded Triaxial Test Specimen

TST Triaxial Suction Test

V Vane Test

 $\begin{array}{ccc} \text{DSB} & \text{Drained Shear Box} \\ \text{RSB} & \text{Residual Shear Box} \\ \text{RS} & \text{Ring Shear} \\ \sigma_3 & \text{Cell Pressure} \\ \sigma_1\text{-}\sigma_3 & \text{Deviator Stress} \end{array}$

c Cohesion

c_ Effective Cohesion Intercept

φ Angle of Shearing Resistance - Degrees
 φ Effective Angle of Shearing Resistance

εf Strain at Failure

* Failed under 1st Load

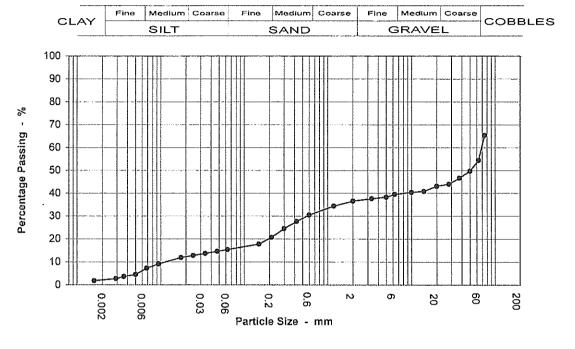
** Failed under 2nd Load

Untestable ## Excessive Strain

 $\begin{array}{lll} p_o & & \text{Effective Overburden Pressure} \\ m_v & & \text{Coefficient of Volume Decrease} \\ c_v & & \text{Coefficient of Consolidation} \end{array}$

Opt Optimum Nat Natural

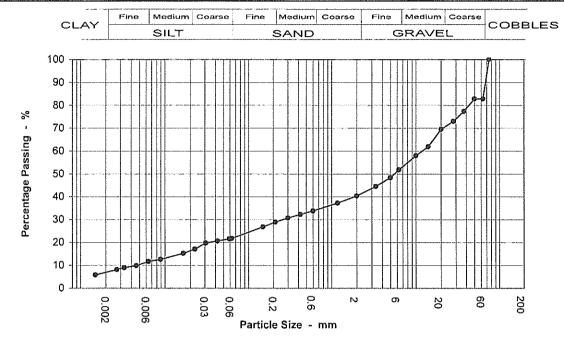
Std Standard Compaction - 2.5kg Rammer (¶ CBR)
Hvy Heavy Compaction - 4.5kg Rammer (§ CBR)


Vib Vibratory Compaction
CBR California Bearing Ratio
Sat m.c. Saturation Moisture Content
MCV Moisture Condition Value

, ,	-®-→ RIORITY TECHNICAL	Natural Moisture Content/Atterberg Limits Summary BS 1377 : Part 2 : 1990 : Clause 3	Job Ref
Loc	cation	N6 GCTP Phase 3	P16185

Hole ID	Sample Ref	Depth (m)	Sample Type	Sample Description	мс	LL	PL,	PI	% Pass 425
SW03-03	2	0.15	D	Very silty very gravelly SAND	48	63	46	17	85.6
SW03-19	2	0.2	D	Very sandy very silty GRAVEL	19	42	28	14	59.1

3@	PARTICLE SIZE DISTRIBUTION	Job Ref	P16185	
PRIORITY GEOTECHNICAL BS 1377: Part 2: 1990: Clause 9		Borehole / Pit No	SW03-03	
Location	N6 GCTP Phase 3	Sample No	1	
		Depth	0.15 m	
Soil Description Very silty very gravelly SAND with high cobble content		Sample type	В	


Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.063	15
90	70	0.048	15
75	65	0.034	14
63	54	0.024	13
50	50	0.018	12
37.5	47	0.009	9
28	44	0.007	7
20	43	0.005	5
14	41	0.004	4
10	40	0.003	3
6.3	39	0.002	2
5	38		
3.35	38		
2	37		
1.18	34		
0.6	30		
0.425	28		
0.3	24		
0.212	21		
0.15	18		
0.063	15		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause 9.2		
Sedimentation	Clause 9.5	

Sample Proportions		
Cobbles	46.7	
Gravel	16.8	
Sand	21.3	
Silt	13.1	
Clay	2.1	

Grading Analysis		
D100	125.000	
D60	69.153	
D10	0.012	
Uniformity Coefficient	5791	

■	PARTICLE SIZE DISTRIBUTION	Job Ref	P16185	
PRIORITY GEOTECHNICAL	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	SW03-19	
Location	N6 GCTP Phase 3	Sample No	. 1	
		Depth	0.20 m	
Soil Description	Very sandy very silty GRAVEL with medium cobble content	Sample type	В	

Sieving		6-4:	4_4:
Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.059	22
90	100	0.043	21
75	100	0.031	20
63	83	0.023	17
50	83	0.017	15
37.5	77	0.009	13
28	73	0.006	12
20	69	0.005	10
14	62	0.003	9
10	58	0.003	8
6.3	52	0.002	6
5	48		
3.35	45		
2	40		
1.18	37		
0.6	34		
0.425	32		
0.3	31		
0,212	29		
0.15	27		
0.063	22		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause 9.2	
Sedimentation	Clause 9.5

Sample Proportions		
Cobbles	17.2	
Gravel	42.4	
Sand	18.7	
Silt	14.8	
Clay	6.8	

Grading Analysis	
D100	75.000
D60	12.112
D10	0.005
Uniformity Coefficient	2566

Contract Number: 33812

Client's Reference: P16185 Report Date: 03-02-2017

Client Priority Geotechnical Limited

Unit 12

Owenacurra Business Park

Midleton Co. Cork.

Contract Title: Galway GCT For the attention of: Colette Kelly

Date Received: 17-01-2017
Date Commenced: 17-01-2017
Date Completed: 03-02-2017

Test Description	Qty
Moisture Content 1377 : 1990 Part 2 : 3.2 - * UKAS	40
4 Point Liquid & Plastic Limit (LL/PL) 1377: 1990 Part 2: 4.3 & 5.3 - * UKAS	24
1017 : 1550 T dit 2 : 4.5 d 6.5	
PSD Wet Sieve method	32
1377 : 1990 Part 2 : 9.2 - * UKAS	
PSD: Sedimentation by hydrometer	31
1377 : 1990 Part 2 : 9.5 - @ Non Accredited Test	
Organic Matter Content-dichromate method	5
1377 : 1990 Part 3 : 3 - @ Non Accredited Test	
Water Soluble Sulphate 2:1 extract	4
1377 : 1990 Part 3 : 5 - @ Non Accredited Test	
pH Value of Soil	4
1377 : 1990 Part 3 : 9 - @ Non Accredited Test	

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director)

GEO Site & Testing Services Ltd

Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Contract Number: 33812

Test Description	Qty
Consolidated Drained Peak Shear Strength - set of 3 - 60 x 60mm Shear Box Specimens by Direct Shearing (3 days)	3
1377 : 1990 Part 7 :4 - * UKAS	
CUD 38mm Consolidated undrained triaxial compression test on a set of three x 38 mm diameter specimens with the measurement of pore water pressure including saturation and consolidation, test duration four days.	2
1377 : 1990 Part 8 : 7 - @ Non Accredited Test	
Disposal of Samples on Project	1

Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Alex Wynn (Associate Director) - Benjamin Sharp (Contracts Manager) - Emma Sharp (Office Manager) Paul Evans (Quality/Technical Manager) - Vaughan Edwards (Managing Director)

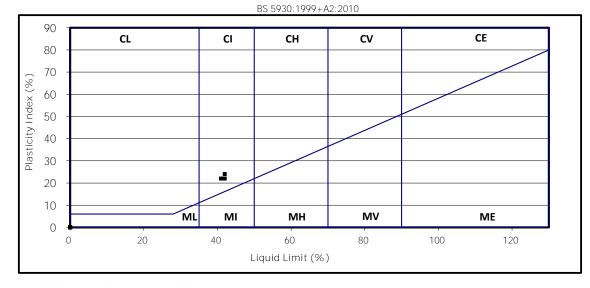
GEO Site & Testing Services Ltd

Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Approved Signatories:

Test Report: Method of the Determination of the plastic limit and plasticity index


BS 1377: Part 2: 1990 Method 5

Client ref: P16185
Location: Galway GCT
Contract Number: 33812-

Hole/			Moisture	Liquid	Plastic	Plasticity	%	
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks
Number	Type	m	%	%	%	%	.425mm	
			Cl. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.		
SW03-12/1	В	1.00	11					
SW03-12/2	В	2.00	11					
SW03-13/1	В	1.50	12					
SW03-14/2	D	0.50	22	41	19	22	100	CI Intermediate Plasticity
SW03-14/4	D	2.00	21	42	20	22	100	CI Intermediate Plasticity
SW03-14/6	D	3.00	24		NP		100	
SW03-14/8	D	4.00	41		NP		100	
SW03-15/1	В	0.50	16		NP		70	
SW03-15/2	D	0.50	25					
SW03-15/4	D	1.50	7.8		NP		60	
SW03-15/5	В	2.50	6.9					
SW03-15/6	D	2.50	9.6					
SW03-15/8	D	3.50	4.4		NP		25	
SW03-16/1	В	0.50	24	42	18	24	100	CI Intermediate Plasticity
SW03-16/2	D	0.50	22					
SW03-16/4	D	1.50	4.5					
SW03-16/6	D	3.00	6.9					

Symbols:

NP: Non Plastic #: Liquid Limit and Plastic Limit Wet Sieved
PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

GS7L
GEO SITE & TESTING SERVICES LTD

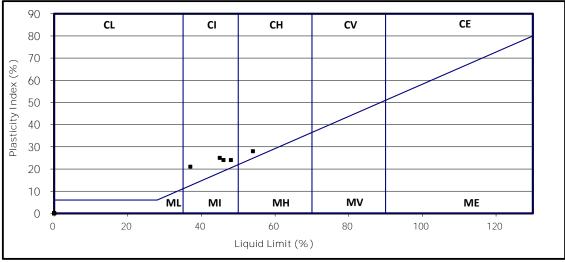
For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Emma Sharp (Office Manager)

Date: 31.1.17

Test Report: Method of the Determination of the plastic limit and plasticity index

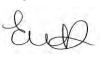

BS 1377: Part 2: 1990 Method 5

Client ref: P16185
Location: Galway GCT
Contract Number: 33812-

Hole/			Moisture	Liquid	Plastic	Plasticity	%	
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks
Number	Type	m	%	%	%	%	.425mm	
			Cl. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.		
SW03-17/2	D	0.20	25	48	24	24	88	CI Intermediate Plasticity
SW03-17/4	D	0.50	33					
SW03-18/2	D	0.50	30	54	26	28	100	CH High Plasticity
SW03-18/4	D	1.50	13	37	16	21	59	CI Intermediate Plasticity
SW03-18/6	D	2.00	26	45	20	25	100	CI Intermediate Plasticity
SW03-18/7	D	3.00	24	46	22	24	100	CI Intermediate Plasticity
SW03-18/8	В	3.00	23					
SW03-18/10	D	3.50	27					

Symbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved
PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

BS 5930:1999+A2:2010



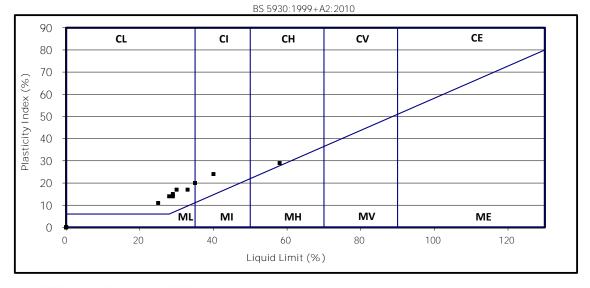
For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Emma Sharp (Office Manager)

Date: 31.1.17

Test Report: Method of the Determination of the plastic limit and plasticity index


BS 1377: Part 2: 1990 Method 5

Client ref: P16185
Location: Galway GCT
Contract Number: 33812-

Hole/			Moisture	Liquid	Plastic	Plasticity	%			
Sample	Sample	Depth	Content	Limit	Limit	Index	Passing	Remarks		
Number	Type	m	%	%	%	%	.425mm			
			CI. 3.2	CI. 4.3/4.4	CI. 5.	CI. 6.				
TP03-50/1	В	0.80	8.9	25	14	11	70	CL Low Plasticity		
TP03-50/2	D	0.80	9.1							
TP03-50/4	D	1.50	7.4		NP		56			
TP03-50/6	D	2.00	8.7	29	15	14	75	CL Low Plasticity		
TP03-50/8	D	3.00	7.7	29	14	15	70	CL Low Plasticity		
TP03-52/2	D	0.20	28							
TP03-52/3	В	0.50	10	30	13	17	70	CL Low Plasticity		
TP03-52/4	D	0.50	23	40	16	24	80	CI Intermediate Plasticity		
TP03-53/2	D	0.50	22							
TP03-53/3	В	1.00	11	35	15	20	82	CL/I Low/Inter. Plasticity		
TP03-53/4	D	1.00	13							
TP03-53/5	В	2.00	9.1	33	16	17	80	CL Low Plasticity		
TP03-53/6	D	2.00	10							
TP03-53/8	D	2.50	7.8		NP		60			
TP03-53/10	D	3.50	7.9	28	14	14	69	CL Low Plasticity		
BH03-62/1	В	0.00	34	58	29	29	60	CH High Plasticity		
BH03-62/2	В	1.00	37							

Symbols:

 $\mbox{NP : Non Plastic} \qquad \mbox{$\#:$ Liquid Limit and Plastic Limit Wet Sieved} \\ \mbox{PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION}. \label{eq:plastic}$

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By:

Emma Sharp (Office Manager)

Date: 31.1.17

Unit 4
Heol Aur
Dafen Ind EstateDafen
Carmarthenshire
SA14 8QN
Tel: 01554 784040
01554 750752
Fax: 01554 770529
01554 784041
Web: www.geo.uk.com

Certificate of Analysis

Date: 25-01-17

Client: Priority

Our Reference: 33812

Client Reference: P1S185

Contract Title: Galway

Description: (Total Samples) 9

Date Received: 23-01-17

Date Started: #REF!

Date Completed: 25-01-17

Test Procedures: (BRE BR 279)

Notes:

Solid samples will be disposed 1 month and liquids 2 weeks after the date of issue of this test certificate

Approved By:

2P Gons

Authorised Signatories:

Emma Sharp Laboratory Office Manager Ben Sharp Contracts Manager Paul Evans Quality Manager Contract No: 33812
Client Ref: P1S185
Location: Galway
Date: 25-01-2017

Summary of Chemical Analysis

(BRE BR 279)

				Sulphate Content as SO ₄			Chloride Content					
	Sample Number	Sample Type		Acid Soluble Sulphate	Aqueous Extract Sulphate	Ground- water	Semi Quantative Test Strip	Quantative	pH Value @ 25°C	Total Sulphur % S	Magnesium g/I	Organic Content
				as % SO ₄	as g/I SO ₄	g/I	mg CI/I	g/I	DD 070	DD 070	DD 070	DD 07
SW03-12		В	1.00	BR 279	BR 279	BR 279	BR 279	BR 279	BR 279	BR 279	BR 279	BR 27
SW03-14		В	3.00									10.2
SW03-14		В	4.00									11.4
SW03-14		В	0.50									0.6
SW03-16		В	1.50		0.02				7.50			0.0
		В	0.50		0.02				7.66			
SW03-17 SW03-18		D	3.50		0.02				7.00			0.9
		В	1.50		<.01				7.91			0.9
SW03-50		В	0.50		0.02				7.34			
SW03-53		D	0.50		0.02				7.34			
							1					l

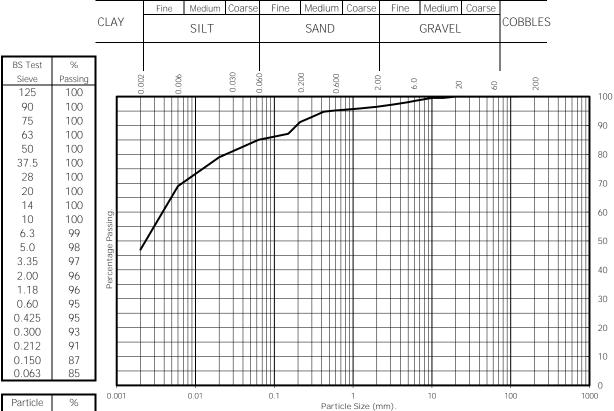
NCP - No Chloride present

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 2


 Contract Number:
 33812 Depth from (m):
 1.00

 Hole Number:
 BH03-62
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown gravelly sandy fine to medium silty CLAY.

Particle	%
Diameter	Passing
0.02	79
0.006	69
0.002	47

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
47	38	11	4	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1

 Contract Number:
 33812 Depth from (m):
 1.00

 Hole Number:
 SW03-12
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL

			Fine	Medium	Coars	e Fine	Mediu	m Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SANE)		GRAVEL		COBBLES	ı	
														
BS Test	%													
Sieve	Passing	0000	900:0		0:030	090.0	0.200	009:0	7.00	2 8		200		
125	100				ö	0.0	0.0	9.0	7 4) Ā	9	7		1 00
90	100		$\perp \perp \perp \perp$							Ш	$\perp \!\!\! \perp \!\!\! \perp \!\!\! \! \! \! \! \! \! \! \! \! \! \!$		$\perp \downarrow \downarrow \downarrow \downarrow$	1
75	100		$\perp \perp \perp \perp$							Ш	_/_/_		$\perp \downarrow \downarrow \downarrow \downarrow$	90
63	100		$\perp \perp \perp \perp$							Ш	$I \sqcup I$		$\perp \downarrow \downarrow \downarrow \downarrow$	1
50	92		$\perp \perp \perp \perp$										$\perp \downarrow \downarrow \downarrow \downarrow$	80
37.5	92		$\perp \perp \perp \perp$										$\perp \downarrow \downarrow \downarrow \downarrow$	
28	84												$\perp \downarrow \downarrow \downarrow \downarrow$	70
20	79									Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	1
14	77	Ġ.								Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	60
10	75	Passing.	$\perp \perp \perp \perp$							Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	
6.3	72	Pas	$\perp \perp \perp \perp$							Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	50
5.0	71	age	$\perp \perp \perp \perp$							Ш			$\perp \downarrow \downarrow \downarrow \downarrow$	
3.35	68	ent	$\perp \perp \perp \perp$			<u> </u>	1 1 1						$\perp \downarrow \downarrow \downarrow \downarrow$	40
2.00	64	Percentage											$\perp \downarrow \downarrow \downarrow \downarrow$	1
1.18	61												$\perp \downarrow \downarrow \downarrow \downarrow$	30
0.60	56												$\perp \downarrow \downarrow \downarrow \downarrow$	
0.425	55												$\perp \downarrow \downarrow \downarrow \downarrow$	20
0.300	50		\perp										$\perp \downarrow \downarrow \downarrow \downarrow$	1
0.212	47		$\perp \perp \perp \perp$										$\perp \downarrow \downarrow \downarrow \downarrow$	10
0.150 0.063	41 37		$\perp \downarrow \downarrow \downarrow$								$\perp \perp \perp \perp$		$\perp \downarrow \downarrow \downarrow \downarrow$	1
0.003	JI	' L								Щ				LI o
Particle	%	0.001		0.01		0.1	Pai	1 ticle Size (i	mm)	10		100	1	000
I							га	LICIC SIZE (I	miny.					

ı	Particle	%				
ı	Diameter	Passing				
	0.02	34				
	0.006	29				
	0.002	19				

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
19	18	27	36	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 2

 Contract Number:
 33812 Depth from (m):
 2.00

 Hole Number:
 SW03-12
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL

				Fine	Medium	Coars	e Fine	Me	dium C	oarse	Fine	Mediun	Coars				
			CLAY		SILT			SA	ND			GRAVE	L	COE	BBLES		
ſ	BS Test	%															
	Sieve	Passing	2	! %		30	- 09	8	0	9	, ,			ı	0		
ľ	125	100	0.002	900.0		0.030	090.0	0.200	0.600	2.00	0.9		20	09	200		100
	90	100															
	75	100											/				90
	63	100															90
	50	100															80
	37.5	100															00
	28	97															70
	20	89															/0
	14	86	5													Ш	60
	10	84	sing													Ш	
	6.3	81	Passing.		Ш		Ш.					Ш				Ш	50
	5.0	79	age		Ш							Ш				Ш	
	3.35	76	Percentage		Ш.,							Ш				Ш	40
	2.00	71	Serc													Ш	
	1.18	67			111												30
	0.60	62														Ш	
	0.425	60 57														Ш	20
	0.300	57 53									-					Ш	
	0.212 0.150	53 47		$\perp \downarrow \downarrow \downarrow \downarrow$			1111	\perp			$\perp \downarrow \downarrow \downarrow \downarrow$					Ш	10
	0.150	47		$\perp \perp \perp \perp$			1111	$\perp \perp$			$\perp \downarrow \downarrow \downarrow \downarrow$					\coprod	Щ
L	0.000	73	' <u> </u>		Щ		Щ					Щ		Щ		Ш	Що
ſ	Particle	%	0.001		0.01		0.1			1	,	10		100			1000
	i di ticio	70							Particle	Size (n	nm).						

Particle	%
Diameter	Passing
0.02	40
0.006	33
0.002	24

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
24	19	28	29	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1

 Contract Number:
 33812 Depth from (m):
 1.50

 Hole Number:
 SW03-13
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown fine to coarse gravelly silty clayey SAND.

			Fine	Medium	Coarse	Fine	Mediu	m Coarse	e Fine	Medium	Coarse			
		CLAY		SILT			SANI)		GRAVEL	_	COBBLES)	
BS Tes	st %	1												
Sieve	Passing	0000	0.006		0.030	090:0	0.200	0.600	2:00	?		. 500		
125	100				Ö	Ö	0	9.0	2, 4) ^	3 9	~		100
90	100													
75	100													90
63	100													1
50	100						\perp						+	80
37.5							\perp		\square	\square			+	4
28	100		-										+	70
20	99													4
14	96	<u>6</u>											-	60
10	93	Passing.				/							$-\!\!+\!\!+\!\!+\!\!+\!\!+\!\!+$	4
6.3	91	Pa											$-\!\!+\!\!\!+\!\!\!\!+\!\!\!\!+\!\!\!\!+\!\!\!\!+$	50
5.0	90	Percentage											-	4
3.35 2.00		Cent											-	40
1.18		Per	-// $-$										-	\blacksquare
0.60			$/\!\!\!/ \parallel$										-	30
0.42		l H								+			-	+
0.300										+++			-	20
0.21													-	+
0.150			-				++	++++-	++++	+++-+			+HH	10
0.06													+++++	+
P	*	0.001		0.01		0.1		1		10		100		Щ 0
Partic	le %	0.001		0.01		0.1	Pa	ı ırticle Size ((mm).	10		100	١	1000

Particle	%				
Diameter	Passing				
0.02	42				
0.006	39				
0.002	27				

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
27	23	33	17	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185
Contract Number: 33812Hole Number: SW03-14

Depth from (m): 0.50
Depth to (m): N/A
Sample Type: B

1

Sample Number:

Location: Galway GCT

Description: Brown fine to medium sandy silty CLAY.

Particle	%				
Diameter	Passing				
0.02	70				
0.006	63				
0.002	38				

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction		
38	37	25	0	0	Total Percentage		

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185 Sample Number:
Contract Number: 33812- Depth from (m):
Hole Number: SW03-14 Depth to (m):
Sample Type:

Location: Galway GCT

Description: Brown fine to medium sandy silty CLAY.

Particle	%				
Diameter	Passing				
0.02	68				
0.006	58				
0.002	41				

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction		
41	35	24	0	0	Total Percentage		

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Date: 30.1.17

3

В

2.00

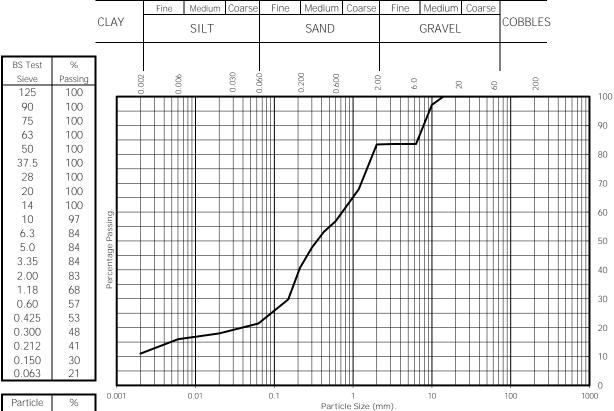
N/A

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 5


 Contract Number:
 33812 Depth from (m):
 3.00

 Hole Number:
 SW03-14
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown fine to medium silty clayey gravelly SAND containing organic material.

Particle	%					
Diameter	Passing					
0.02	18					
0.006	16					
0.002	11					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction		
11	10	62	17	0	Total Percentage		

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

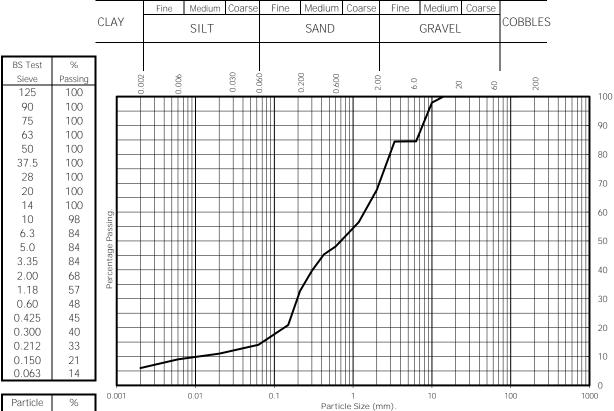
Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 7


 Contract Number:
 33812 Depth from (m):
 4.00

 Hole Number:
 SW03-14
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown fine to medium clayey silty gravelly SAND containing organic material.

Particle	%					
Diameter	Passing					
0.02	11					
0.006	9					
0.002	6					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction		
6	8	54	32	0	Total Percentage		

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1

 Contract Number:
 33812 Depth from (m):
 0.50

 Hole Number:
 SW03-15
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown clayey silty fine to coarse gravelly SAND.

				Fine	Medium	Coarse	Fine	Medi	um Coarse	Fine	Medium	Coarse			
			CLAY		SILT			SAN	D		GRAVEL		COBBLES		
ſ	BS Test	%													
L	Sieve	Passing		9000		0.030		0.200	0.600	0.9	8	09	200		
I	125	100			<u> </u>	0 0	5	ö	ŏ °	, ,	7	9	~		1 00
	90	100			Ш	$\perp \downarrow \downarrow \downarrow \downarrow$	Ш					ullet		$\perp \perp \perp \perp$	
ı	75	100			Ш		Ш				₩,	<i>/</i>		$\perp \perp \perp \perp$	90
	63	100				$\perp \downarrow \downarrow \downarrow \downarrow$	Ш							$\perp \perp \perp \perp \perp$	1
ı	50	100			Ш	$\perp \downarrow \downarrow \downarrow \downarrow$	Ш							$\perp \downarrow \downarrow \downarrow \downarrow$	80
ı	37.5	100				$\perp \downarrow \downarrow \downarrow \downarrow$								$\perp \downarrow \downarrow \downarrow \downarrow$	
ı	28	91												$\perp \downarrow \downarrow \downarrow \downarrow$	70
ı	20	91													
ı	14	89	i i		Ш		Ш	$/\!\!\perp$						$\perp \perp \perp \perp$	60
	10	87	Sing			$\perp \downarrow \downarrow \downarrow \downarrow$	Ш	Ш						$\perp \perp \perp \perp \perp$	1
ı	6.3	85	Pas			$\perp \downarrow \downarrow \downarrow \downarrow$	<i> </i>							$\perp \perp \perp \perp \perp$	50
ı	5.0	84	Percentage Passing				<i> </i>							$\perp \perp \perp \perp \perp$	
ı	3.35	83	ent				Ⅲ 丿								40
ı	2.00	81	erc											ШШ	10
ı	1.18	79	<u> </u>				1111							ШШ	30
ı	0.60	76					Ш							ШШ	
ı	0.425	74				$\perp \downarrow \downarrow \downarrow \downarrow$	Ш							ШШ	20
ı	0.300	69													
ı	0.212	60					Ш							ШШ	10
ı	0.150	42					Ш							ШШ	10
L	0.063	33	' <u> </u>				Ш								<u> </u>
Γ	Particle	%	0.001		0.01		0.1		1		10		100	1	000
1		, ,						Р	article Size (r	nm).					

Particle	%					
Diameter	Passing					
0.02	28					
0.006	22					
0.002	14					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction		
14	19	48	19	0	Total Percentage		

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 1.50

 Hole Number:
 SW03-15
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse gravelly SAND.

				Fine	Medium	Coarse	e Fine	Med	dium Co	oarse	Fine	Mediur	n Coai				
			CLAY		SILT			SA	ND			GRAVE	EL	С	OBBLES		
				-													
	BS Test	%	l														
	Sieve	Passing	5	1 %		0.030	- 09	00	8	9	l } _		_	ı	0		
	125	100		0.00		0.0	090:0	0.200	0.600	2 00	3 0	5	20	09	200		100
	90	100												I			
	75	100												7111			90
	63	100												7			J 90
	50	89															80
	37.5	89															80
	28	84															70
	20	79															/0
	14	76	- i														60
	10	74	sing					$\perp \perp$								Ш	
	6.3	71	Passing.													Ш	50
	5.0	70	age													Ш	
	3.35	68	ent					$/\!\!\perp$								Ш	40
	2.00	66	Percentage				<i>J</i>										10
	1.18	64												ШШ			30
	0.60	60					11111							ШШ		Ш	Ш
	0.425	58					Ш							ШШ		Ш	20
	0.300	52					Ш		ШШ		$\perp \perp \perp \perp$					Ш	Ш 20
	0.212	46						$\perp \perp$	$\Box\Box\Box\Box$		$\perp \downarrow \downarrow \downarrow \downarrow$	1111		Ш		Щ	10
	0.150 0.063	35 30						$\perp \perp$			$\perp \downarrow \downarrow \downarrow \downarrow$			$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$		Ш	Ш.
	0.003	30			Щ		Щ					Щ				Ш	Що
ı	Particle	%	0.001		0.01		0.1		1			10		1	100		1000
	raiticle	/0							Particle :	Size (n	nm).						

Particle	%					
Diameter	Passing					
0.02	24					
0.006	20					
0.002	16					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
16	14	36	34	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 5

 Contract Number:
 33812 Depth from (m):
 2.50

 Hole Number:
 SW03-15
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL.

			Fine	Medium	Coars	e Fine	Mediu	m Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SANE)		GRAVEL		COBBLES)	
BS Test	%													
Sieve	Passing	0 002	900:0		0.030	090.0	0.200	0.600	2.00	8	0	200		
125	100				Ö	ö	0	9.	2) (99	~		1 00
90	100		$\perp \perp \perp \perp$							Ш	$\perp \! \! / \! \! \perp \! \! \perp$			
75	100									Ш	$H \sqcup H$			90
63	100		$\perp \perp \perp \perp$							Ш	/			, ,
50	100		$\perp \downarrow \downarrow \downarrow \downarrow$						\square				$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	80
37.5	100		$\perp \downarrow \downarrow \downarrow \downarrow$							$\parallel \parallel / \parallel$	$\perp \perp \perp \perp$		$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	
28	88		$\perp \downarrow \downarrow \downarrow \downarrow$											70
20	79		$\perp \downarrow \downarrow \downarrow \downarrow$											
14	74	o d	\perp											60
10	70	ssin								Ш	$\perp \perp \perp \perp$		$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	
6.3	66	Passing.	$\perp \downarrow \downarrow \downarrow \downarrow$					1111			\perp		$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	50
5.0	65	age	$\perp \perp \perp \perp$								\perp		$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	
3.35	62	ent					$/\!\!\perp\!\!\perp\!\!\perp$			Ш				40
2.00	60	Percentage	$\perp \downarrow \downarrow \downarrow \downarrow$			<i> </i>	1							
1.18	58		$\perp \downarrow \downarrow \downarrow \downarrow$											30
0.60	54		$\perp \downarrow \downarrow \downarrow \downarrow$								$\perp \perp \perp \perp$		$\perp \downarrow \downarrow \downarrow \downarrow$	
0.425	53 49									Ш	$\perp \perp \perp \perp$		$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	20
0.300	49 44													
0.212			\perp					1111						10
0.150 0.063	32 27		$\perp \! \! \perp \! \! \perp \! \! \perp$			1111	\square				++++		+++++	
0.003	<i>L1</i>	' <u> </u>		Ш		Щ		Ш		Щ				U o
Particle	%	0.001		0.01		0.1	Do.	1 rticle Size (mm)	10		100	10	000
1							га	LICIE SIZE (

Particle	%
Diameter	Passing
0.02	23
0.006	19
0.002	14

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
14	13	33	40	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 5

 Contract Number:
 33812 Depth from (m):
 3.50

 Hole Number:
 SW03-15
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown gravelly silty clayey sandy fine to coarse SAND.

			Fine	Medium	Coarse	Fine	Mediu	m Coars	e Fine	Medium	Coarse			
		CLAY		SILT			SANI)		GRAVEL		COBBLES	1	
BS Test	%													
Sieve	Passing	0 002	900:0		0.030	090:0	0.200	0.600	2.00	?) 0	200		
125	100				Ö	Ö	0	9.	2, 4		3 9	7		100
90	100		$\perp \perp \perp \perp$										$\perp \downarrow \downarrow \downarrow \downarrow$	1
75	100		$\perp \perp \perp \perp$										$\perp \downarrow \downarrow \downarrow \downarrow$	90
63	100		$\perp \downarrow \downarrow \downarrow \downarrow$										$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	1
50	100		$\perp \perp \perp \perp$						1				$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	80
37.5	100		++++							\square	\perp		+++++	4
28	100		+							\square	\perp		+++++	70
20	100		+							\square	\perp		++++	4
14	97	ö	$-\!\!+\!\!+\!\!+\!\!+$				\longrightarrow						++++	60
10	94	Passing.	$-\!+\!+\!+\!+$										++++	4
6.3	90	- Pa	\longrightarrow										++++	50
5.0	89	Percentage	\longrightarrow										++++	\downarrow
3.35	86	Sent	++++										+++++	40
2.00	84 81	Perc											+++++	4
1.18 0.60	76												+++++	30
0.425	73		++++										+++++	4
0.423	68		++++							+++	++++		+++++	20
0.212	64		++++				$\overline{}$			+++	++++		+++++	+
0.150	55		+++			HHH	++		+	+++	+		++++	10
0.063	50		+++				++				+++		+HH	+
		' <u> </u>								1111				Щ о
Particle	%	0.001		0.01		0.1	Pa	1 Irticle Size	(mm).	10		100	1	1000
									٧.,					

Particle	%
Diameter	Passing
0.02	44
0.006	36
0.002	29

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
29	21	34	16	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve, Clause 9.2

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 1.50

 Hole Number:
 SW03-16
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL with one large cobble.

			Fine	Mediun	n Coarse	Fine	Medi	um Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAN	ID		GRAVEL		COBBLES		
BS Test	%				0		_	_						
Sieve	Passing		700.0		0.030	3	0.200	0.600	0.9	2	09	200		
125	4		5 c) 	0	<u> </u>	,			 	11111	100
90	4	l		Ш					-		++++			Н
75	4	l							-		++++		++++	90
63	4	l									++++			4
50	4	l									++++			80
37.5	4	l												#
28	3													70
20	3													Щ
14	3			Ш									++++	60
10	3	Passing.		Ш									++++	Щ
6.3	2	Ba		Ш.		Ш.			\perp		$\perp \perp \perp \perp$			50
5.0	2	age		Ш							\perp			Щ
3.35	2	ent												40
2.00	2	Percentage											Ш	1
1.18	2												Ш	30
0.60	1			Ш										
0.425	1			Ш										20
0.300	1			Ш		Ш							Ш	1
0.212	1			Ш		Ш			$\perp \downarrow \downarrow \downarrow \downarrow$				$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	10
0.150	1 1			Ш		Ш					$\perp \perp \perp \perp$			Ш "
0.063	ı	, r		Ш										Що
Particle	%	0.001		0.01		0.1	Р	1 article Size (r	nm).	10		100		1000

Particle	%
Diameter	Passing
0.02	#
0.006	#
0.002	#

Silt and Clay	Sand	Gravel	Cobbles	Soil Fraction
1	1	2	96	Total Percentage

Remarks:

#- not determined

GSTL

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Date: 3.2.17

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 5

 Contract Number:
 33812 Depth from (m):
 3.00

 Hole Number:
 SW03-16
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL.

				Fine	Medium	Coarse	e Fine	Me	dium (Coarse	Fine	Mediun	n Coarse				
			CLAY		SILT			SA	ND			GRAVE	1	COBBL	ES.		
							1								_		
ſ	BS Test	%	l														
	Sieve	Passing	2	I % %		30	- 09	8	00	9	 	,		I =			
ŀ	125	100	000	9000		0.030	090:0	0.200	0.600	000	3 0	5	8 8	00	2		100
	90	100															100
	75	100														$\Pi\Pi$	90
	63	100											7			$\Pi\Pi$	90
	50	100															80
	37.5	100															00
	28	95															70
	20	84															70
	14	76	- i								$- \!\!\!\! \perp \!\!\!\! \perp \!\!\!\! \! \!\!\! \! \! \!\!\!\! \!\!\!$	1111					60
	10	72	sing														. 00
	6.3	65	Passing.		Ш											Щ	50
	5.0	60	age		Ш											Ш	
	3.35	57	enti		Ш											Щ	40
	2.00	53	Percentage														
	1.18	49						4								Щ'	30
	0.60	45					مسلسا									Щ'	
	0.425	43					11111				\perp			\square		<u> </u>	20
	0.300	39			_						\perp			\square		<u> </u>	
	0.212 0.150	34 28			Ш			\perp	++++		$\perp \perp \perp \parallel$			\square	\perp	1111	10
	0.150	28 24			Ш			$\perp \perp$			$\perp \perp \perp \perp \parallel$			$\parallel \parallel \parallel$		444	
L	0.000	<u> </u>			Ш		Ш										0
ſ	Particle	%	0.001		0.01		0.1		5	1	`	10		100		10	000
	i di ticio	/0							Particle	e Size (n	nm).						

Particle	%
Diameter	Passing
0.02	19
0.006	16
0.002	13

I	Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
	13	11	29	47	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1


 Contract Number:
 33812 Depth from (m):
 0.20

 Hole Number:
 SW03-17
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown gravelly clayey silty fine to medium SAND.

Particle	%
Diameter	Passing
0.02	50
0.006	43
0.002	26

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
26	32	41	1	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185 Contract Number: 33812-Hole Number: SW03-17

Depth from (m): 0.50
Depth to (m): N/A
Sample Type: B

3

Sample Number:

Location: Galway GCT
Description: Brown silty CLAY.

			Fine	Medium	Coarse	Fine	Mediu	um Coarse	Fine	Medium	Coarse	4		
		CLAY		SILT			SAN	D		GRAVEL	-	COBBLES		
		-												
BS Test	%													
Sieve	Passing	000	90000		0.030		0.200	009.0	9	}	3 9	200		
125	100		5 6	1111		<u> </u>	o	o c	1 1 1 1	1111	1 1 1	N N		1 00
90	100		\perp			Ш			$-\!\!+\!\!+\!\!+\!\!+\!\!+$	\square	$\perp \perp \perp \perp$			H
75	100					Ш							ДШ	90
63	100					Ш				Ш			$\perp \downarrow \downarrow \downarrow \downarrow \downarrow$	
50	100					Ш								80
37.5	100													4
28	100		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			Ш				Ш			ШШ	70
20	100													1
14	100		$/\!\!\perp\!\!\perp\!\!\perp\!\!\perp$											60
10	100	Sing												00
6.3	100	Pas												50
5.0	100	ge												30
3.35	100	enta												40
2.00	100	Percentage Passing												40
1.18	100	۵												
0.60	100													30
0.425	100													ſl
0.300	100												+++++	20
0.212	100									\Box			+++++	ſ
0.150	100												11111	10
0.063	100												11111	ı
	1	0.001		0.01		0.1		1		10		100	10	₩ 0 000
Particle	%	0.001		3.0.		0	Pa	article Size (r	mm).			. 50	10	
Diamatas	Doooloo													

Particle	%
Diameter	Passing
0.02	88
0.006	73
0.002	59

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
59	41	0	0	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185 Contract Number: 33812-Hole Number: SW03-18

Depth from (m): 0.50
Depth to (m): N/A
Sample Type: B

1

Sample Number:

Location: Galway GCT

Description: Brown slightly sandy silty CLAY.

				Fine	Mediun	n Coars	se Fin	е М	edium	Coarse	Fine	Mediu	m Co	arse				
			CLAY		SILT			S	AND			GRAV	EL		COBBLES			
ſ	BS Test	%	l															
	Sieve	Passing	2	1 8		0.030	- 09	0.200	8	00	} ∈			_ '	0			
I	125	100		0.006		0.0	0.060	0.2	0.600	2.6	2.5	j.	20	09	200			100
	90	100															\prod	100
	75	100															П	90
	63	100																90
	50	100																80
	37.5	100																00
ı	28	100																70
	20	100																70
	14	100																60
ı	10	100	sing	/														00
	6.3	100	Pass														Ш	50
	5.0	100	ige														Ш	50
ı	3.35	100	enta															40
	2.00	100	Percentage Passing															40
	1.18	100	4														Ш	20
	0.60	100															Ш	30
ı	0.425	100															Ш	20
	0.300	100																20
	0.212	100														\Box	Ш	10
I	0.150	98														\Box	Ш	10
L	0.063	96															\prod	0
Г	Particle	%	0.001		0.01		0.1			1	,	10			100		100	0
- 1	. ai tioio	, ,							Parti	cle Size (r	nm).							

Particle	%
Diameter	Passing
0.02	90
0.006	81
0.002	56

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
56	40	4	0	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 1.50

 Hole Number:
 SW03-18
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty fine to coarse gravelly clayey SAND.

				Fine	Medium	Coarse	e Fine	Med	lium Co	arse	Fine	Mediu	m Coa	arse			
			CLAY		SILT			SAI	ND			GRAVI	=1	(COBBLES		
ı	DC T+	0/	I														
	BS Test Sieve	% Passing	0	 9		000	0	0	0	- 1				l			
	125	100	000	900.0		0.030	090:0	0.200	0.600	2.00	0.9		20	09	200		
	90	100										Ш					100
	75	100											+	-/		+++	Π
	63	100														$\top \Box \Box$	90
	50	94										111				$\top \Box \Box$	
	37.5	94															80
	28	94															1
	20	94															70
	14	92															1
	10	89	sing														60
	6.3	85	Percentage Passing														50
	5.0	83	age														
	3.35	80	enta														40
	2.00	77	erc														40
	1.18	72	т.														30
	0.60	67]
	0.425	65												ШШ			20
	0.300	61												ШШ			
	0.212	59			Ш							Ш		ШШ			10
	0.150 0.063	53 48			Ш						$\perp \downarrow \downarrow \downarrow \downarrow$	Ш		ШШ		$\perp \downarrow \downarrow \downarrow$	Ш '
	0.003	48										Ш					Що
	Particle	%	0.001		0.01		0.1		1			10			100		1000
	raiticle	/0							Particle S	Size (m	nm).						

Particle	%
Diameter	Passing
0.02	40
0.006	31
0.002	26

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
26	22	29	23	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185 Contract Number: 33812-Hole Number: SW03-18

Depth from (m): 2.00
Depth to (m): N/A
Sample Type: B

Sample Number:

5

Location: Galway GCT

Description: Brown fine sandy silty CLAY.

			Fine	Medium	Coarse	Fine	Medi	um Coarse	e Fine	Medium	Coarse			
		CLAY		SILT			SAN	D		GRAVEL	_	COBBLES		
		-												
BS Test	%	Ī												
Sieve	Passing		900		0.030	3	0.200	0.600	2:00	? .	R 99	500		
125	100				Ö ö	5	0	, O	2 ,) (7 5	~		1 00
90	100									Ш				1
75	100					Ш				Ш	$\perp \perp \perp \perp$			90
63	100					Ш					$\perp \perp \perp \perp$			1
50	100					Ш					$\perp \perp \perp \perp$			80
37.5	100					Ш					$\perp \perp \perp \perp$			
28	100					Ш								70
20	100					Ш				Ш				
14	100	5				Ш				Ш	$\perp \perp \perp \perp$			60
10	100	sin S				Ш								
6.3	100	Pas				Ш					$\perp \downarrow \downarrow \downarrow \downarrow$			50
5.0	100	age												
3.35	100	ent												40
2.00	100	Percentage Passing												10
1.18	100													30
0.60	100													30
0.425	100													20
0.300	100													20
0.212	100													10
0.150	100					Ш								
0.063	99	J [
Particle	%	0.001		0.01		0.1		1	<u> </u>	10		100	10	000
i di ticic	70						Р	article Size	(mm).					

Particle	%					
Diameter	Passing					
0.02	84					
0.006	71					
0.002	56					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
56	43	1	0	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

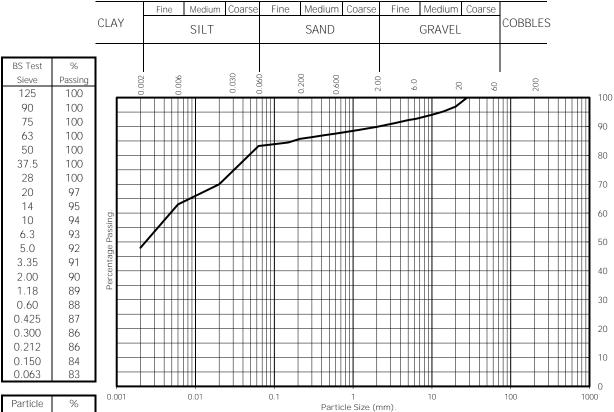
Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 7


 Contract Number:
 33812 Depth from (m):
 3.00

 Hole Number:
 SW03-18
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown sandy fine to coarse gravelly silty CLAY.

Particle	%					
Diameter	Passing					
0.02	70					
0.006	63					
0.002	48					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
48	35	7	10	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

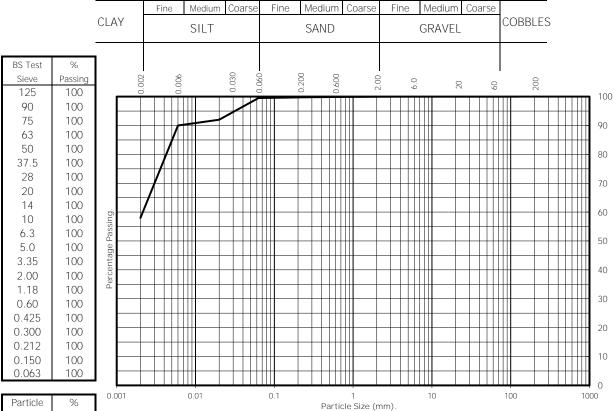
Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185 Contract Number: 33812-Hole Number: SW03-18


Depth from (m): 3.50
Depth to (m): N/A
Sample Type: B

Sample Number:

9

Location: Galway GCT

Description: Greyish brown silty CLAY.

Particle	%					
Diameter	Passing					
0.02	92					
0.006	90					
0.002	58					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
58	42	0	0	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1

 Contract Number:
 33812 Depth from (m):
 0.80

 Hole Number:
 TP03
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse gravelly SAND.

				Fine	Medium	Coarse	e Fine	Med	dium Co	oarse	Fine	Mediu	ım Co	arse			
			CLAY		SILT			SA	ND			GRAV	ΈI		COBBLES	1	
ı	DC T+	0/	1														
	BS Test Sieve	% Passing	0	 9		000		0	0								
	125	100	0 002	900.0		0.030	090:0	0.200	0.600	2.00	0.9		20	09	200		
	90	100										Ш					100
	75	100												Ш		+++	† †
	63	100												Ш		$\top \Box \Box$	90
	50	100														$\top \Box \Box$	11
	37.5	96														$\top \Box \Box$	80
	28	93															11
	20	91															70
	14	89															
	10	86	sing											Ш			60
	6.3	82	Percentage Passing														50
	5.0	81	age]
	3.35	78	ent														40
	2.00	74	erc														40
	1.18	70															30
	0.60	66										Ш		Ш		Ш	Ш
	0.425	64												Ш			20
	0.300	61												Ш			Щ
	0.212	57 40		$\perp \downarrow \downarrow \downarrow \downarrow$							$\perp \downarrow \downarrow \downarrow \downarrow$	Ш	\perp	Ш		Щ	10
	0.150 0.063	49 43		$\perp \downarrow \downarrow \downarrow$	Ш		1111	\perp			$\perp \downarrow \downarrow \downarrow \downarrow$	\coprod		Ш		$\perp \! \! \perp \! \! \perp \! \! \perp \! \! \perp$	#
	0.000	73	י ו		Ш		Щ					Щ					Що
	Particle	%	0.001		0.01		0.1		1		,	10			100		1000
	i di ticio	,0							Particle S	ыze (n	nm).						

Particle	%					
Diameter	Passing					
0.02	38					
0.006	33					
0.002	24					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
24	19	31	26	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 1.50

 Hole Number:
 TP03-50
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse sandy GRAVEL.

			Fine	Medium	Coarse	e Fine	Mediur	m Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND)		GRAVEL		COBBLES	,	
BS Test	%													
Sieve	Passing	0000	900:0		0.030	090:0	0.200	0.600	2.00	8	0	200		
125	100				Ö	0	0	9.0	7i 4	0 0	99	~ ~		1 00
90	100		$\perp \downarrow \downarrow \downarrow \downarrow$			Ш					$\perp \prime \downarrow$			
75	100		$\perp \downarrow \downarrow \downarrow \downarrow$			Ш					$\perp / \perp \perp$			90
63	100		\perp								$/\!\!\!/\!\!\!\perp\!\!\!\perp$			1
50	100		$\perp \downarrow \downarrow \downarrow \downarrow$			Ш—				$\parallel \parallel /$				80
37.5	92		\perp											
28	86		+			Ш					$\perp \perp \perp \perp$			70
20	81		+			Ш					$\perp \perp \perp \perp$		+	
14	77	Ď.	++++			Ш					++++			60
10	74	Passing.	\longrightarrow			Ш.								4
6.3	70	- Pa	\longrightarrow											50
5.0	69	Percentage	\longrightarrow				\leftarrow							1
3.35	67	Sent	++++											40
2.00	64	Per	++++			1111-								H
1.18 0.60	60 55				\frown									30
0.425	53										++++		+++++	H
0.423	50		4		-	Ш					++++		+++++	20
0.212	47		++++		-	Ш					++++		+++++	+
0.150	42		++++		-	+++-					++++		+++++	10
0.063	38		+++			+++-								\mathbb{H}
		0.001		0.01		0.1		11111		10		100	11111	Щ _О
Particle	%	0.001		0.01		0.1	Par	ı ticle Size (mm).	10		100	ı	000

Particle	%					
Diameter	Passing					
0.02	31					
0.006	29					
0.002	20					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
20	18	26	36	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 5

 Contract Number:
 33812 Depth from (m):
 2.00

 Hole Number:
 TP03-50
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse sandy GRAVEL with many cobbles.

			Fine	Medium	Coars	se Fine	Me	dium	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SA	AND			GRAVEL	=	COBBLES		
													-		
BS Test	%														
Sieve	Passing	0000	9000		0:030	0.060	0.200	0.600	000	0.9	}	₹ 9	200		
125	69		<u> </u>		0	<u>o</u>	0	- i	<u> </u>	1 1 1 1	· · ·	1 1 1 1	·		100
90	69		$-\!\!+\!\!+\!\!+\!\!+$									++++		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	
75	69		$-\!+\!+\!+\!+$									++++		++++	90
63	69		\longrightarrow				\perp	++++				++++		++++	4
50	69		\longrightarrow				\perp	++++				\longrightarrow		++++	80
37.5	59		++++					++++				$\rightarrow \rightarrow \rightarrow \rightarrow$		++++	4
28	53		++++					+					₩-	++++	70
20	46		$-\!\!+\!\!+\!\!+\!\!+$									$+\!\!\!/\!\!\!/$		$\perp \! \! \perp \! \! \! \perp \! \! \! \! \! \perp$	
14	44	Ď.	$-\!\!+\!\!+\!\!+\!\!+$									$-\!$		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	60
10	41	Passing.	$\perp \perp \perp \perp \perp$							$\perp \perp \perp \perp \perp$		_////		$\perp \! \! \perp \! \! \perp \! \! \perp$	Щ
6.3	39	Pas	++++							\perp		/		$\perp \! \! \perp \! \! \perp \! \! \perp$	50
5.0	38	age	++++							\perp		/		$\perp \! \! \perp \! \! \perp \! \! \perp$	
3.35	37	ent	\perp									$\perp \downarrow \downarrow \downarrow \downarrow$			40
2.00	36	Percentage	$\perp \downarrow \downarrow \downarrow$							_		$\perp \downarrow \downarrow \downarrow$			
1.18	35	_	$\perp \downarrow \downarrow \downarrow \downarrow$									$\perp \downarrow \downarrow \downarrow \downarrow$			30
0.60	33		$\perp \downarrow \downarrow \downarrow \downarrow$					11111				$\perp \downarrow \downarrow \downarrow \downarrow$			
0.425 0.300	32 30		\perp				4			\perp		$\perp \perp \perp \perp$		$\perp \! \! \perp \! \! \perp \! \! \perp$	20
0.300	28									\perp		++++		$\perp \perp \perp \perp$	1
0.212	23									\perp		++++		$\perp \! \! \perp \! \! \perp \! \! \perp$	10
0.150	23 20		++++				++	+ + + + + + + + + + + + + + + + + + +		-	\square	++++		+	Щ
0.003	20	'				Щ			Щ		Щ				Що
Particle	%	0.001		0.01		0.1		Particl	1 le Size (n	nm)	10		100		1000
	l								(1						

Particle	%					
Diameter	Passing					
0.02	18					
0.006	16					
0.002	12					

Clay	Silt	t Sand Grave		Cobbles	Soil Fraction
12	8	16	33	31	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 7

 Contract Number:
 33812 Depth from (m):
 3.00

 Hole Number:
 TP03-50
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse sandy GRAVEL.

			Fine	Medium	Coarse	e Fine	Med	lium Co	arse	Fine	Mediu	um Co	arse				
		CLAY		SILT			SAI	ND			GRAV	/FI		COBBLES	3		
BS Test	%																
Sieve	% Passing	2	l , 9		000	00	0	0	I	_			ļ				
125	100	000	900.0		0.030	090:0	0.200	0.600	2.00	0.9		29	09	200			
90	100												Ш				100
75	100										Ш		Ш		Ш	Ш	
63	100												Ш		Ш	Ш	90
50	100												Ш			Ш	00
37.5	100												Ш		Ш	Ш	80
28	95												Ш			Ш	7.0
20	87							بإاااا									70
14	83																/ 0
10	81	sing															60
6.3	76	Percentage Passing											Ш			Ш	50
5.0	75	age											Ш				50
3.35	73	enta															40
2.00	70	erce															40
1.18	67	Δ.															30
0.60	63		ملال														30
0.425	61															Ш	20
0.300	57												Ш			Ш	20
0.212	54												Ш		ШШ	Ш	10
0.150	47		$\perp \downarrow \downarrow \downarrow \downarrow$							$\perp \downarrow \downarrow \downarrow \downarrow$			Ш	Ш	Ш	Ш	10
0.063	43					Ш					Ш					Щ	0
Dorticle	%	0.001		0.01		0.1		1			10			100		100	
Particle	/0							Particle S	ize (m	nm).							

Particle	%					
Diameter	Passing					
0.02	38					
0.006	26					
0.002	22					

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
22	21	27	30	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L
GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

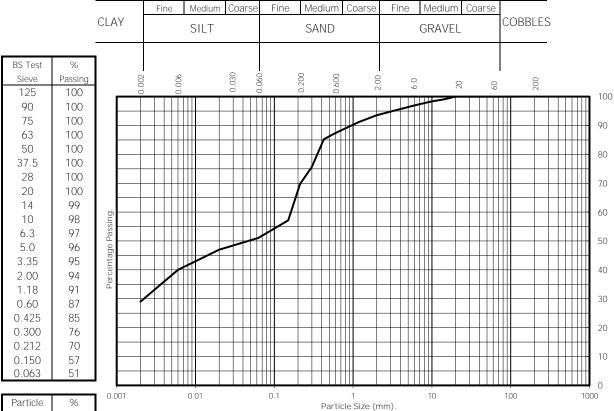
Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Client ref: P16185
Contract Number: 33812Hole Number: TP03-52


Depth from (m): 0.20
Depth to (m): N/A
Sample Type: B

1

Sample Number:

Location: Galway GCT

Description: Brown gravelly silty clayey fine SAND.

Particle	%
Diameter	Passing
0.02	47
0.006	40
0.002	29

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction	
29	22	43	6	0	Total Percentage	

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 0.50

 Hole Number:
 TP03-52
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL.

			Fine	Medium Coars	se Fine	e Me	dium Coarse	Fine	Medium	Coarse			
		CLAY		SILT		SA	AND		GRAVEL		COBBLES		
BS Test	%	1											
Sieve	Passing		900.0	0.030	090.0	0.200	0.600	00.7	, ,		200		
125	100		0.0	0.0	0.0	0.5	9.0	, v	2. 2.	09	20		100
90	100												100
75	100									$\perp \! \! \perp \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$			90
63	100									$\perp \! \! \perp \! \! \! \! \! \! \! \perp \! \! \! \! \! \! \! \!$			70
50	82									$\perp \mid J \mid$			80
37.5	78												00
28	75									/			70
20	69												70
14	66	_											60
10	65	sing						/					00
6.3	62	Sass											50
5.0	54	ge											50
3.35	53	enta											40
2.00	51	Percentage Passing				7							40
1.18	49	4				/							20
0.60	46												30
0.425	44												
0.300	44												20
0.212	40												1.0
0.150	32											111111	10
0.063	26												
	_	0.001		0.01	0.1		1		10		100	100	0
Particle	%						Particle Size (r	mm).					

Particle	%
Diameter	Passing
0.02	22
0.006	19
0.002	16

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
16	10	25	49	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 1

 Contract Number:
 33812 Depth from (m):
 0.50

 Hole Number:
 TP03-53
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown gravelly silty clayey fine to coarse SAND.

			Fine	Medium	Coarse	Fine	Mediun	n Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SAND			GRAVEL		COBBLES	1	
BS Test	%													
Sieve	Passing	0 002	900:0		0.030	090:0	0.200	00.00	. 00.7	2	0	200		
125	100				Ö	Ö	6	5 (7 9		09	~ ~		100
90	100		$\perp \perp \perp \perp$											1
75	100		$\perp \perp \perp \perp$											90
63	100		$\perp \perp \perp \perp$											1
50	100		$\perp \perp \perp \perp$											80
37.5	100		$\perp \perp \perp \perp$				\sqcup / \sqcup							
28	100						$/\!\!\perp\!\!\perp\!\!\perp$							70
20	100						μ							
14	99	Ġ.	$\perp \perp \perp \perp$			/								60
10	98	sing	$\perp \perp \perp \perp$											1
6.3	96	Passing.	$\perp \perp \perp \perp$											50
5.0	94	age	$\perp \perp \perp \perp$											
3.35	93	ent												40
2.00	91	Percentage												
1.18	88													30
0.60	85													
0.425	83		$\perp \downarrow \downarrow \downarrow \downarrow$											20
0.300	78 71		$\perp \perp \perp \perp$											1
0.212	71		$\perp \perp \perp \perp$											10
0.150 0.063	59 53		$\perp \perp \perp \perp$											1
0.003	00													Що
Particle	%	0.001		0.01		0.1	Do-	1 ticle Size (r	mm)	10		100		1000
							Par	ticie size (I	HH11).					

Particle	%
Diameter	Passing
0.02	42
0.006	39
0.002	29

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
29	24	38	9	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 1.00

 Hole Number:
 TP03-53
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown fine to coarse gravelly silty clayey SAND.

			Fine Medium Co	oarse	Fine	Medium	Coarse	Fine	Medium C	Coarse			
		CLAY	SILT			SAND			GRAVEL		COBBLES		
BS Test	%												
Sieve	Passing	8	0.030	0.060 –	9	0.200	00 0	0.9	0	_	700		
125	100		0.00%	0.0		9.0	,		20	09	20		n 100
90	100												
75	100												90
63	100						_						90
50	100												80
37.5	100												00
28	97												70
20	97												
14	96												60
10	95	sing											00
6.3	92	Pass											50
5.0	91	ige											30
3.35	89	ente											40
2.00	86	Percentage Passing											40
1.18	84	4											30
0.60	78												30
0.425	76												20
0.300	64												20
0.212	60												10
0.150	54												10
0.063	50												
Particle	%	0.001	0.01		0.1	Partic	1 cle Size (n	nm)	10		100	1	1000

Particle	%
Diameter	Passing
0.02	40
0.006	36
0.002	26

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
26	24	36	14	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 3

 Contract Number:
 33812 Depth from (m):
 2.00

 Hole Number:
 TP03-53
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey fine to coarse gravelly SAND.

				Fine 1	Medium Coarse	Fine	Mediu	ım Coarse	Fine	Medium (Coarse			
			CLAY		SILT		SAN)		GRAVEL		COBBLES		
Ī	BS Test	%												
ı	Sieve	Passing	5	900.0	0.030	000.0	0.200	0.600	00.7) 0	0	200		
ı	125	100		0.0	0.0	5	0.5	9:0	, v	8	09	20		1 00
ı	90	100												
ı	75	100												90
ı	63	100												90
ı	50	100							\setminus					80
ı	37.5	100												00
	28	94												70
ı	20	87												/0
	14	87												60
	10	86	Sing					11111						00
	6.3	84	Pas											50
	5.0	83	age											30
ı	3.35	81	ente											40
ı	2.00	77	Percentage Passing											40
ı	1.18	68	۵											30
ı	0.60	60												30
ı	0.425	57												20
ı	0.300	53												20
ı	0.212	51												10
ı	0.150	46												10
L	0.063	43] 。
ſ	Particle	%	0.001	0	1.01	0.1	Pa	1 article Size (i	mm).	10		100	1	000

Particle	%
Diameter	Passing
0.02	37
0.006	33
0.002	23

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
23	20	34	23	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GS7L

GEO SITE & TESTING SERVICES LTD

For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 7

 Contract Number:
 33812 Depth from (m):
 2.50

 Hole Number:
 TP03-53
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty sandy clayey fine to coarse GRAVEL.

				Fine	Medium	Coars	e Fine	Me	dium (Coarse	Fine	Mediu	m Coa				
			CLAY		SILT			SA	ND			GRAV	FI	(COBBLES		
ſ	BS Test	%															
	Sieve	Passing	0	l , 9		000	 	0	0		_			ļ			
ŀ	125	100	0000	9000		0:030	090:0	0.200	0.600	2 00	3 0	5	20	09	200		
	90	100											I			$\Box\Box$	100
	75	100											$\perp \eta$	Ш		+++	Ħ
	63	100											$\top I$	Ш		+++	90
	50	100												Ш			T
	37.5	100															80
	28	80											7				70
	20	73															70
	14	72															60
	10	70	sing											Ш			
	6.3	68	Passing.														50
	5.0	67	gge														
	3.35	65	enta														40
	2.00	64	Percentage														1
	1.18	61	4	ــــــــــــــــــــــــــــــــــــــ													30
	0.60	57												Ш		Ш	Ш
	0.425	56			Ш									Ш		Ш	20
	0.300	53			Ш						$\perp \perp \perp \perp$	Ш		Ш		Ш	Ш
	0.212	50			Ш						$\perp \perp \perp \perp$			Ш		Ш	10
	0.150 0.063	45 42			Ш			$\perp \perp$	ШШ		$\perp \downarrow \downarrow \downarrow \downarrow$	Ш	$\perp \perp \downarrow$	Щ		$\perp \downarrow \downarrow \downarrow$	Ш.
L	0.003	42			Щ												Що
ſ	Particle	%	0.001		0.01		0.1			1		10			100		1000
	raiticle	/0							Particle	: Size (n	nm).						

Particle	%
Diameter	Passing
0.02	35
0.006	31
0.002	24

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
24	18	22	36	0	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Particle Size Distribution Test

BS 1377 Part 2:1990.

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

 Client ref:
 P16185
 Sample Number:
 9

 Contract Number:
 33812 Depth from (m):
 3.50

 Hole Number:
 TP03-53
 Depth to (m):
 N/A

 Sample Type:
 B

Location: Galway GCT

Description: Brown silty clayey sandy fine to coarse GRAVEL with many cobbles.

			Fine	Medium	Coars	e Fine	Med	dium	Coarse	Fine	Medium	Coarse			
		CLAY		SILT			SA	ND			GRAVEL		COBBLES		
BS Test	%				0		_	_							
Sieve	Passing	0 000	9000		0:030	090:0	0.200	0.600	00 0	0.9	5	9	200		
125	44				П		- 	ПП	1	·	пп т	 	 	ПП	100
90	44						++							++++	
75	44						++				-				90
63	44		$\overline{}$												+
50	41						++				-				80
37.5	36														
28	32														70
20 14	29 28														
10	28 27	j j					++							++++	60
6.3	26	Passing.					++				-			++++	H
5.0	25	e Pa	+++				++					++++		++++	50
3.35	25	Percentage					+				-	بر ا ا	 	++++	H
2.00	24	ceu										$+ \nearrow$			40
1.18	23	Per										$-\!\!/\!\!/\!\!\perp$			
0.60	21											4+++			30
0.425	20														
0.300	18														20
0.212	17										-			++++	
0.150	15					++++-	++					++++		++++	10
0.063	14														+
		0.001		0.01		0.1			1		10		100		Щ _О 1000
Particle	%	0.001		0.01		0.1		Particle	। e Size (n	nm).	10		100		1000

Particle	%
Diameter	Passing
0.02	11
0.006	9
0.002	7

Clay	Silt	Sand	Gravel	Cobbles	Soil Fraction
7	7	10	20	56	Total Percentage

Remarks:

Cl 9.4.8 - Sample has not been pretreated

GSTL GEO SITE & TESTING SERVICES LTD For and behalf of GEO Site & Testing Services Ltd

Authorised By: Emma Sharp (Office Manager)

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Borehole Number: TP03-52		Depth from (m):	0.50				
Sample Number :	IB	Depth to (m):	3.00				
Sample Type:		(Assumed)					
Particle Density - Mg/m3:	2.65	(Assumed)	0 1				
Specimen Tested:	Submerged, Remoulded (Light Tamping) Material above 2mm removed.						
Sample Description:	Į.						
Brown slightly silty gravelly (fine-coarse	e/angular-subrounded) sandy (CLAY					
STAGE		1	2	3			
Initial Conditions							
Height - mm:		24.27	24.27	24.27			
Length - mm:		59.97	59.97	59.97			
Moisture Content - %:		9	9	9			
Bulk Density - Mg/m3:		2.10	2.10	2.10			
Dry Density - Mg/m3:		1.92	1.92	1.92			
Voids Ratio:		0.3811	0.3827	0.3825			
Normal Pressure- kPa		20	40	60			
Consolidation							
Consolidated Height - mm:		24.21	24.03	23.85			
Shear							
Rate of Strain (mm/min)		0.010	0.010	0.010			
Strain at peak shear stress (mm)		8.38	7.34	7.33			
Peak shear Stress - kPa:		9	19	29			
PEAK							
Angle of Shearing Resistance: (0)		_		25.5			
Effective Cohesion - kPa:		_		0			

FAILURE CONDITIONS 40 Shear Stress - (kPa). 20 0 20 40 0 60 80 Normal Stress -(kPa). • Peak shear Stress - kPa: ----- Best Fit Line

Galway GCT

2P Glans

Approved Pages 1-4 by: Date

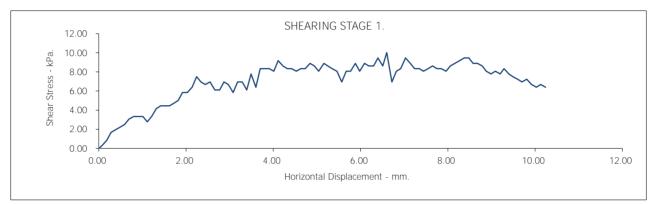
31/01/17

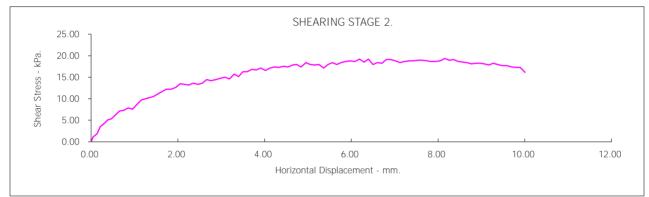
Contract No.: 33812

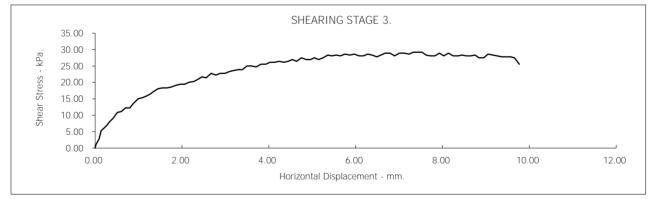
Client Ref Number:

P16185

31/01/17

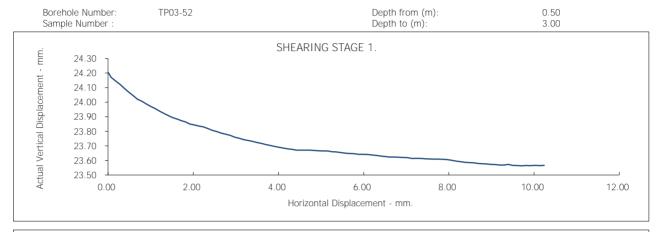

Date:


2P Glans

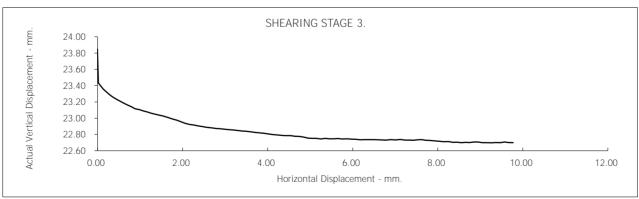

Checked Pages 1-4 by:

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

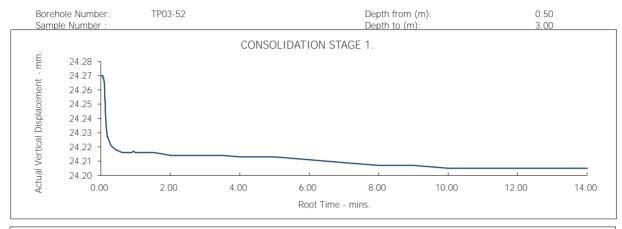
Borehole Number: TP03-52 Depth from (m): 0.50 Sample Number: Depth to (m): 3.00

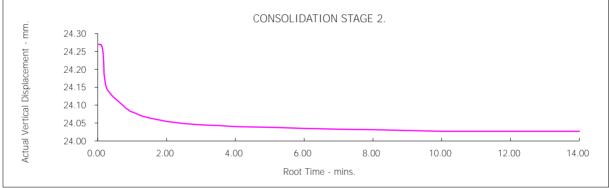

Galway GCT

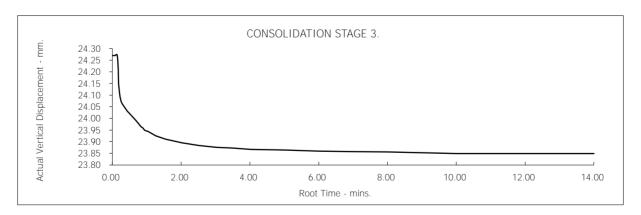
Contract No.: 33812


Client Ref Number: P16185 Figure.

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.


Contract No.: 33812


Galway GCT


Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.

Contract No.: 33812

Galway GCT

Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Borehole Number:	TP03-52		Depth from (m):	0.50	
Sample Number :	B3		Depth to (m):	3.00	
Sample Type:		В			
Particle Density - Mg/m3:		2.65	(Assumed)		
Specimen Tested:		Submerged, Remoulde	ed (Light Tamping) Material al	pove 2mm removed.	
Sample Description:	11 (6)	4 1 1 1 1 1	01.41/		
	avelly (fine-coarse	e/angular-subrounded) sand			
STAGE			1	2	3
Initial Conditions					
Height - mm:			24.27	24.27	24.27
Length - mm:			59.97	59.97	59.97
Moisture Content - %:			9	9	9
Bulk Density - Mg/m3:			2.10	2.10	2.10
Dry Density - Mg/m3:			1.92	1.92	1.92
Voids Ratio:			0.3811	0.3827	0.3825
Normal Pressure- kPa			20	40	60
Consolidation					
Consolidated Height - mn	n:		24.21	24.03	23.85
Shear					
Rate of Strain (mm/min)			0.010	0.010	0.010
Strain at peak shear stres	ss (mm)		8.38	7.34	7.33
Peak shear Stress - kPa:	,		9	19	29
			1	l	
PEAK					
Angle of Shearing Resista	ince: (0)				25.5
Effective Cohesion - kPa:					0
ETTOSTITO CONCONOTI INI G.					

FAILURE CONDITIONS 40 Shear Stress - (kPa). 20 0 20 40 0 60 80 Normal Stress -(kPa). • Peak shear Stress - kPa: ----- Best Fit Line

01/02/17

2P Glans

Approved Pages 1-4 by: Date

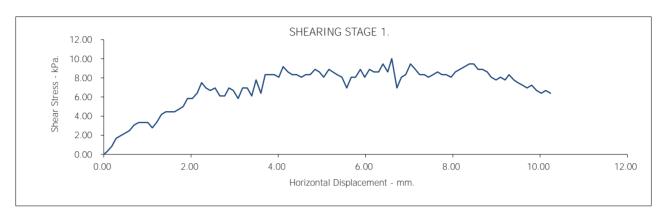
Contract No.: 33812

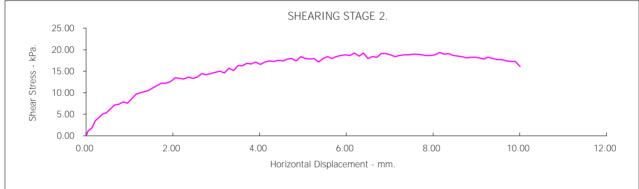
Client Ref Number:

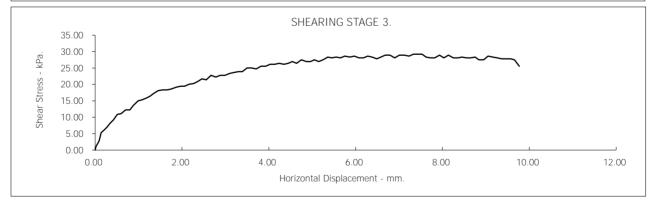
P16185

Galway GCT

01/02/17


Date:


DP Grans

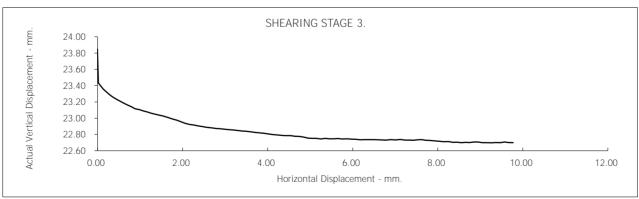

Checked Pages 1-4 by:

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

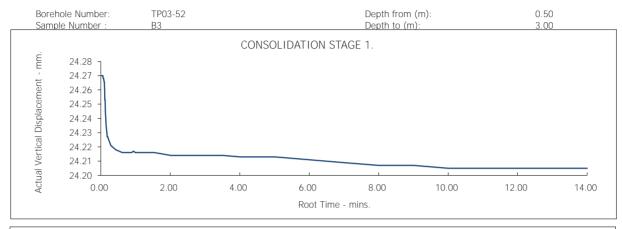
Borehole Number:TP03-52Depth from (m):0.50Sample Number:B3Depth to (m):3.00

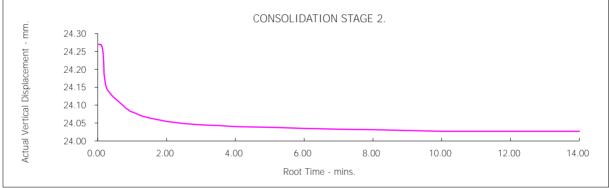
Galway GCT

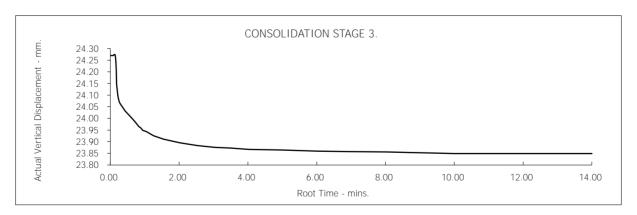
Contract No.: 33812


Client Ref Number: P16185 Figure.

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.

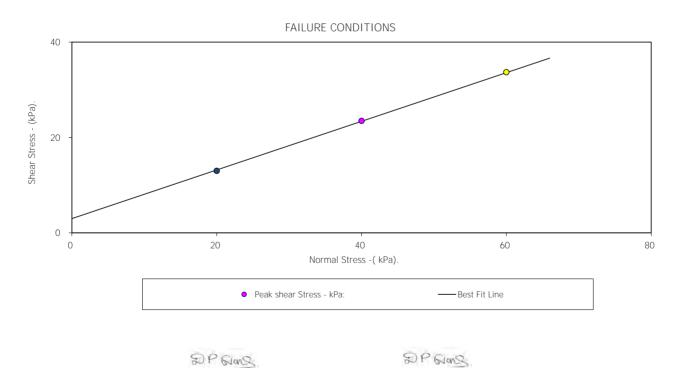



Contract No.: 33812


Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.

Contract No.: 33812


Galway GCT

Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Borehole Number: TP03-53		Depth from (m):	1.00	
Sample Number: B3		Depth to (m):	3.00	
Sample Type:	В			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Remoulded	d (Light Tamping) Material ab	ove 2mm removed.	
Sample Description:				
Brown slightly silty sandy gravelly (fine	-coarse/angular-subrounded)	soft CLAY		
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.27	24.27	24.27
Length - mm:		59.97	59.97	59.97
Moisture Content - %:		10	10	10
Bulk Density - Mg/m3:		2.24	2.25	2.25
Dry Density - Mg/m3:		2.05	2.05	2.05
Voids Ratio:		0.2942	0.2931	0.2935
Normal Pressure- kPa		20	40	60
Consolidation				
Consolidated Height - mm:		24.04	23.79	23.54
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		9.52	8.44	6.35
Peak shear Stress - kPa:		13	23	34
			-	
PEAK				
Angle of Shearing Resistance: (0)				27.0
Effective Cohesion - kPa:				3

Galway GCT

Approved Pages 1-4 by: Date

01/02/17

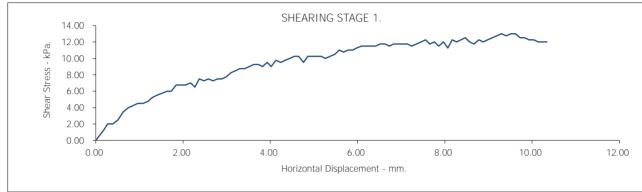
Contract No.: 33812

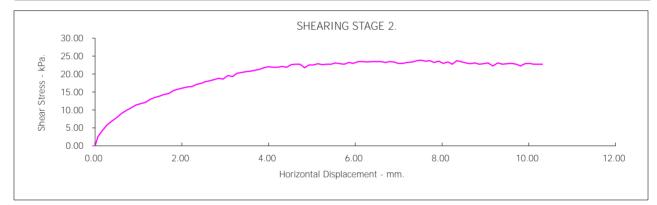
Client Ref Number:

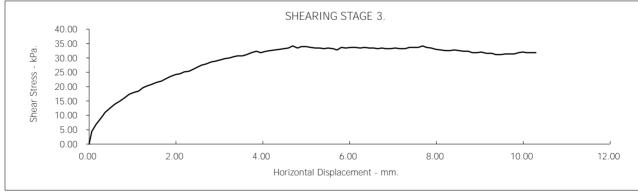
P16185

01/02/17

Date:


Checked Pages 1-4 by:

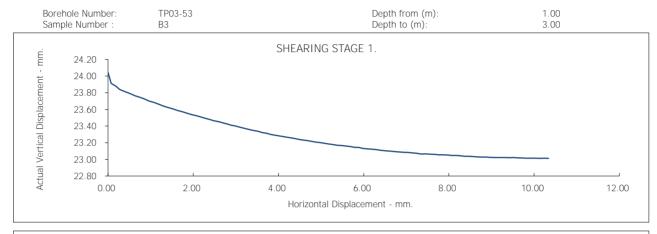

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

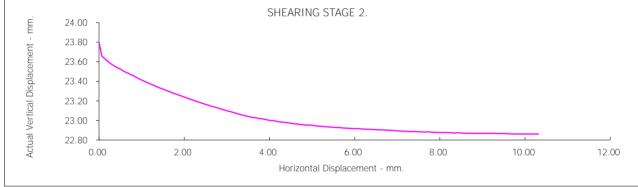

TP03-53

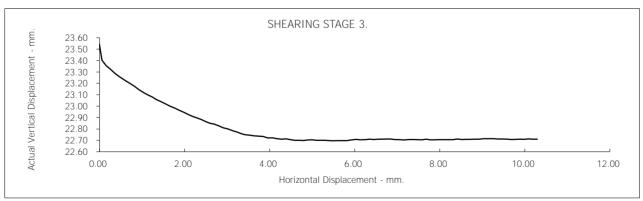
Borehole Number:

Depth from (m): Depth to (m): 3.00 Sample Number: ВЗ SHEARING STAGE 1.

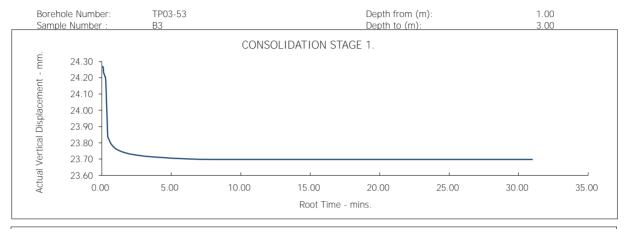
Contract No.: 33812


1.00

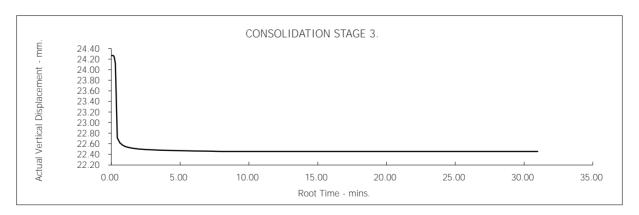

Client Ref Number: P16185 Figure.



Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.


Contract No.: 33812

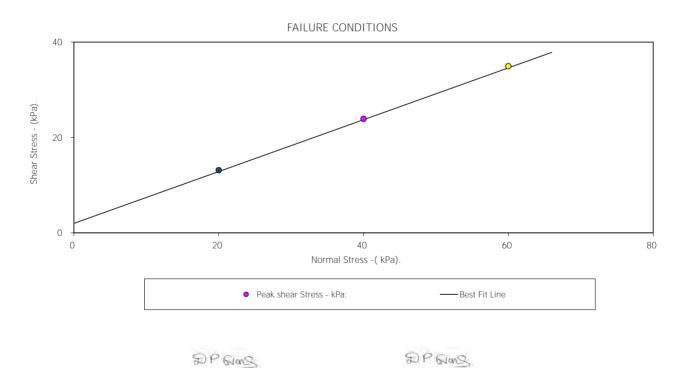
Galway GCT


Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.

Contract No.: 33812

Galway GCT


Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

Effective Cohesion - kPa:

Borehole Number: TP03-53		Depth from (m):	2.00	
Sample Number: B5		Depth to (m):	5.00	
Sample Type:	В			
Particle Density - Mg/m3:	2.65	(Assumed)		
Specimen Tested:	Submerged, Remoulded	d (Light Tamping) Material a	bove 2mm removed.	
Sample Description:				
Brown slightly silty sandy gravelly (fine-c	coarse/angular-subrounded)	soft CLAY		
STAGE		1	2	3
Initial Conditions				
Height - mm:		24.50	24.50	24.50
Length - mm:		59.90	59.90	59.90
Moisture Content - %:		11	11	11
Bulk Density - Mg/m3:		2.22	2.22	2.22
Dry Density - Mg/m3:		2.00	2.00	2.00
Voids Ratio:		0.3241	0.3236	0.3242
Normal Pressure- kPa		20	40	60
Consolidation				
Consolidated Height - mm:		24.28	23.97	23.66
Shear				
Rate of Strain (mm/min)		0.010	0.010	0.010
Strain at peak shear stress (mm)		9.74	8.17	7.15
Peak shear Stress - kPa:		13	24	35
		•		
PEAK				
Angle of Shearing Resistance: (0)				28.5

Galway GCT

Approved Pages 1-4 by: Date

01/02/17

Contract No.: 33812

Client Ref Number:

P16185

01/02/17

Date:

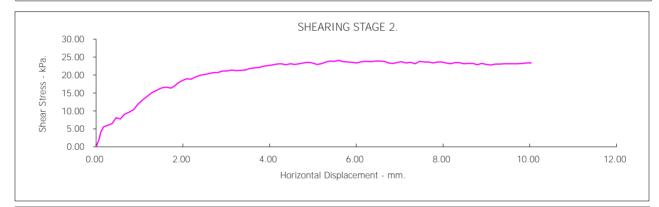
Checked Pages 1-4 by:

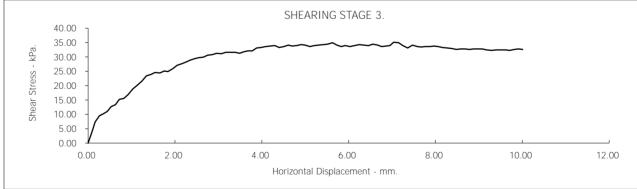
Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5 :1990.

TP03-53

В5

Borehole Number:

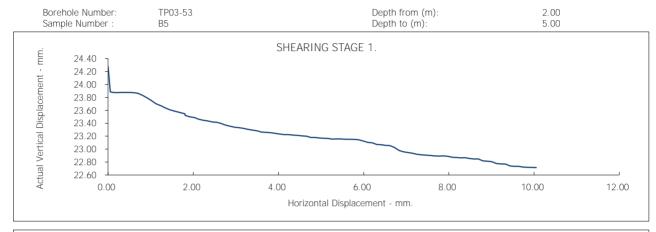

Sample Number:

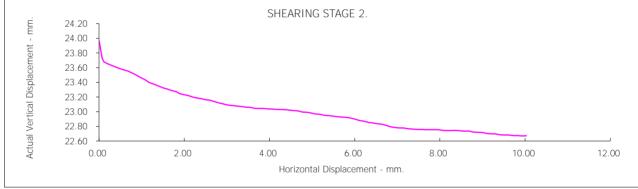

SHEARING STAGE 1. 14.00 12.00 Shear Stress - kPa. 10.00 8.00 6.00 4.00 2.00 0.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00

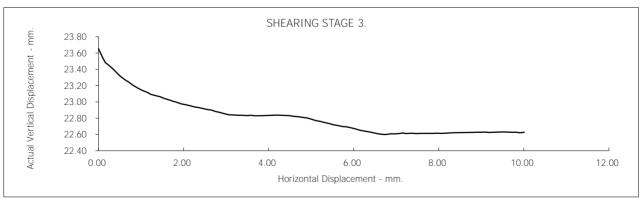
Horizontal Displacement - mm.

Depth from (m): Depth to (m):

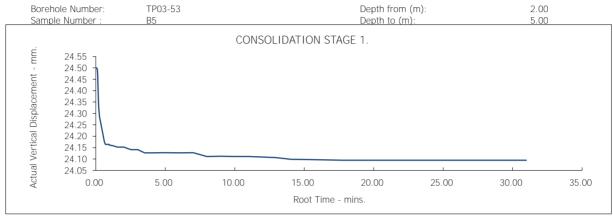
2.00 5.00


Galway GCT

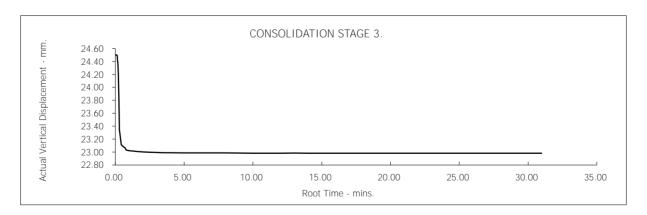

Contract No.: 33812


Client Ref Number: P16185 Figure.

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.



Contract No.: 33812


Client Ref Number: P16185

Test Report: CONSOLIDATED DRAINED SHEARBOX TEST. BS1377:Part 7:4.5:1990.

Contract No.: 33812

Galway GCT

Client Ref Number: P16185

Specimen Details

_ :		
Borehole Sample No.		TP03-50 1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00
Date		02/02/2017
Disturbed / Undisturbed		Disturbed

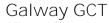
Description of Specimen

Brown silty firm CLAY

Initial Specimen Conditions

Height	mm	76.00	76.00	76.00
Diameter	mm	38.00	38.00	38.00
Area	mm^2	1134.11	1134.11	1134.11
Volume	cm ³	86.19	86.19	86.19
Mass	g	192.80	171.00	170.00
Dry Mass	g	135.10	144.00	141.00
Density	Mg/m ³	2.24	1.98	1.97
Dry Density	Mg/m ³	1.57	1.67	1.64
Moisture Content	%	43	19	21
Specific Gravity	kN/m ³	2.65	2.65	2.65
(assume	d/measured)	assumed	assumed	assumed

Final Specimen Conditions


Moisture Content	%	19	19	18
Density	Mg/m ³	2.40	2.41	2.70
Dry Density	Mg/m ³	2.01	2.03	2.28

Checked and Approved By

02/02/17

Date

Client Ref P16185 Contract No

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

Test Setup

Date started	31/01/2017	26/01/2017	26/01/2017
Date Finished	01/02/2017	00/01/1900	00/01/1900
Top Drain Used	у	у	У
Base Drain Used	у	у	У
Side Drains Used	у	у	У
Pressure System Number	P11	P10	P11
Cell Number	C11	C10	C11

Saturation

Cell Pressure Incr.	kPa	100.00	100.00	100.00
Back Pressure Incr.	kPa	95.00	95.00	95.00
Differential Pressure	kPa	5.00	5.00	5.00
Final Cell Pressure	kPa	300.00	500.00	500.00
Final Pore Pressure	kPa	296.00	395.50	495.00
Final B Value		0.97	0.95	0.97

Consolidation

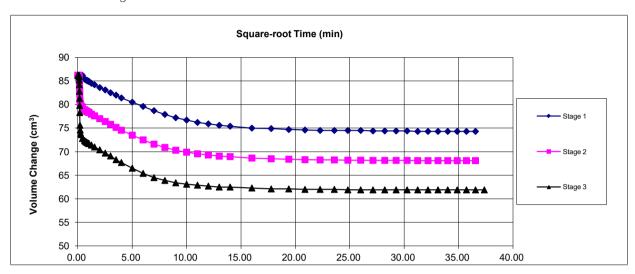
Effective Pressure	kPa	200.00	300.00	400.00
Cell Pressure	kPa	300.00	500.00	500.00
Back Pressure	kPa	100.00	200.00	100.00
Excess Pore Pressure	kPa	196.00	296.00	395.00
Pore Pressure at End	kPa	100.00	200.00	100.00
Consolidated Volume	cm ³	67.19	70.94	61.89
Consolidated Height	mm	70.42	71.52	68.86
Consolidated Area	mm^2	967.45	1000.34	920.96
Vol. Compressibility	m^2/MN	2.20436	0.88465	2.81926
Consolidation Coef.	m²/yr.	0.29190	0.02043	0.37693

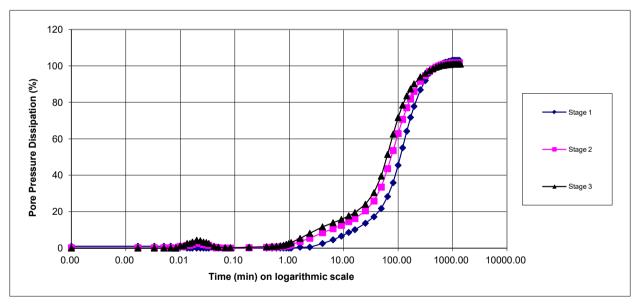
2 P Gons Checked and Approved By

02/02/17

Date

Client Ref P16185 Contract No


33812



Specimen Details

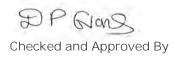
Borehole		TP03-50
Sample No		1
Sample No.		
Depth	from(m)	0.50
Sample No. Depth Depth	to(m)	1.00

Consolidation Stage

02/02/17 Date

> Client Ref P16185 Contract No

Galway GCT



Specimen Details

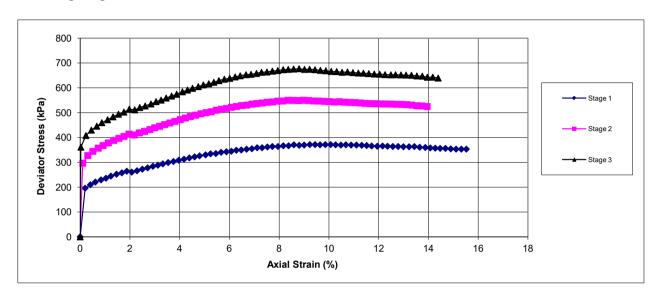
Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

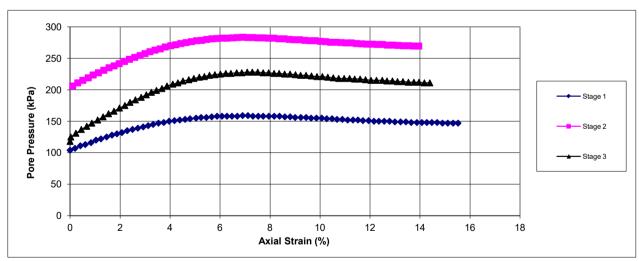
Shearing

Silicaring				
Initial Cell Pressure	kPa	300	500	500
Initial Pore Pressure	kPa	100	200	100
Rate of Strain	mm/min	0.0150	0.0011	0.0189
Max Deviator Stress				
Axial Strain		9.856	8.977	8.801
Axial Stress	kPa	383.891	562.01	689.23
Cor. Deviator stress	kPa	372.470	549.77	676.95
Effective Major Stress	kPa	516.470	770.27	951.95
Effective Minor Stress	kPa	145.000	220.50	275.00
Effective Stress Ratio		3.562	3.493	3.46
S'	kPa	330.735	495.39	613.47
t'	kPa	185.735	274.89	338.47
Max Effective Priciple	e Stress R	atio		
Axial Strain		8.592	8.355	8.801
Axial Stress	kPa	382.659	561.823	689.225
Cor. Deviator stress	kPa	370.498	549.710	676.947
Effective Major Stress	kPa	513.498	768.710	951.947
Effective Minor Stress	kPa	143.000	219.000	275.000
Effective Stress Ratio		3.591	3.510	3.462
S'	kPa	328.249	493.855	613.473
t'	kPa	185.249	274.855	338.473
Shear Resistance Angle	degs			33.0
Cohesion c'	kPa			5

02/02/17 Date

> Client Ref P16185 Contract No


Galway GCT



Specimen Details

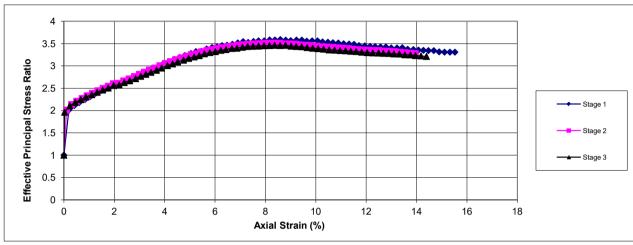
Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

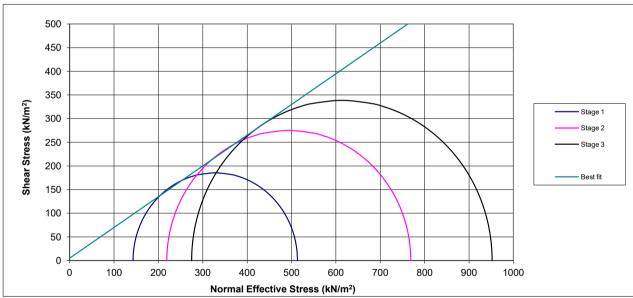
Shearing Stage

2 P Gions Checked and Approved By

02/02/17 Date

Client Ref P16185 Contract No


33812



Specimen Details

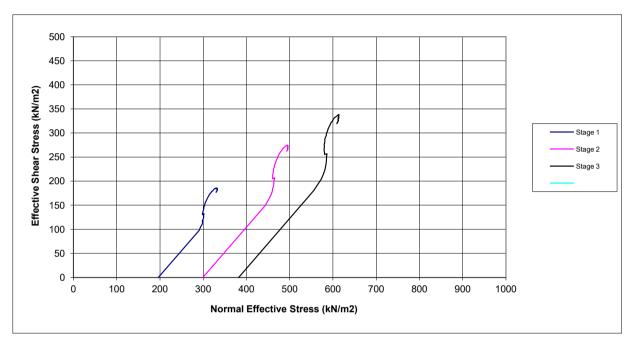
Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

Shearing Stage

SP Gas Checked and Approved By

02/02/17 Date

> Client Ref P16185 Contract No


Galway GCT

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

Shearing Stage

02/02/17 Date

Client Ref P16185 Contract No 33812

Specimen Details

opeonnen Betane		
Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

02/02/17 Date

BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole Sample No.		TP03-50 1
Depth Depth	from(m)	0.50
Depth	to(m)	1.00
Date		02/02/2017
Disturbed / Undisturbed		Disturbed

Description of Specimen

Brown silty firm CLAY

Initial Specimen Conditions

Height	mm	76.00	74.00	76.00
Diameter	mm	38.00	37.00	38.00
Area	mm^2	1134.11	1075.21	1134.11
Volume	cm ³	86.19	79.57	86.19
Mass	g	197.80	196.20	192.80
Dry Mass	g	179.00	180.20	177.30
Density	Mg/m ³	2.29	2.47	2.24
Dry Density	Mg/m ³	2.08	2.26	2.06
Moisture Content	%	11	9	9
Specific Gravity	kN/m³	2.65	2.65	2.65
(assume	d/measured)	assumed	assumed	assumed

Final Specimen Conditions

Moisture Content	%	10	9	9
Density	Mg/m ³	2.52	2.54	2.63
Dry Density	Mg/m³	2.30	2.34	2.42

2) Hours

Checked and Approved By

02/02/17

Date

Client Ref P16185 Contract No

Galway GCT

BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

Test Setup

Date started	31/01/2017	26/01/2017	26/01/2017
Date Finished	01/02/2017	00/01/1900	00/01/1900
Top Drain Used	у	у	У
Base Drain Used	у	у	У
Side Drains Used	у	у	У
Pressure System Number	P11	P10	P11
Cell Number	C11	C10	C11

Saturation

Cell Pressure Incr.	kPa	100.00	100.00	100.00
Back Pressure Incr.	kPa	95.00	95.00	95.00
Differential Pressure	kPa	5.00	5.00	5.00
Final Cell Pressure	kPa	300.00	500.00	500.00
Final Pore Pressure	kPa	296.00	396.50	497.00
Final B Value		0.97	0.95	0.97

Consolidation

Effective Pressure	kPa	200.00	300.00	400.00
Cell Pressure	kPa	300.00	500.00	500.00
Back Pressure	kPa	100.00	200.00	100.00
Excess Pore Pressure	kPa	196.00	297.00	397.00
Pore Pressure at End	kPa	100.00	200.00	100.00
Consolidated Volume	cm ³	77.99	77.12	73.19
Consolidated Height	mm	73.59	73.24	72.18
Consolidated Area	mm^2	1062.19	1053.14	1020.08
Vol. Compressibility	m^2/MN	0.95136	0.15396	1.50825
Consolidation Coef.	m²/yr.	2.64027	0.02043	2.16131

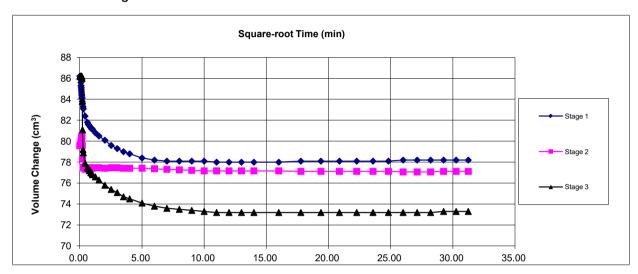
DP GOOD **Checked and Approved By**

02/02/17

Date

Client Ref P16185 **Contract No**

33812




BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

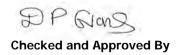
Consolidation Stage

SP Gas Checked and Approved By

02/02/17 Date

> Client Ref P16185 Contract No

Galway GCT


BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth	to(m)	1.00

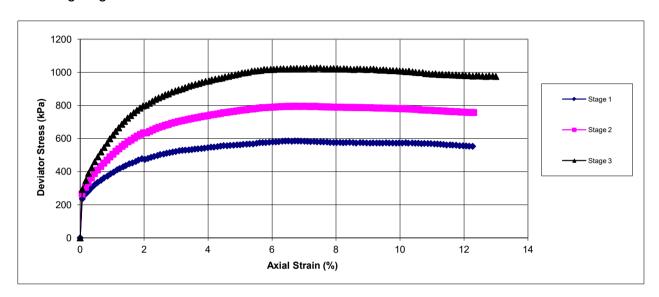
Shearing

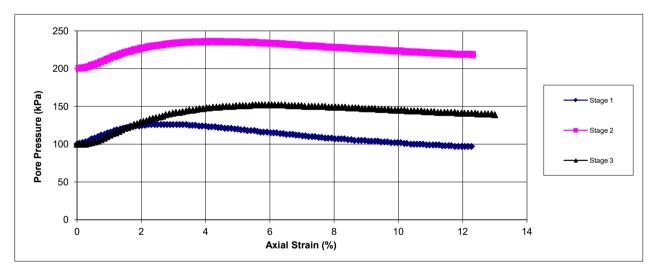
Initial Cell Pressure	kPa	300	500	500
Initial Pore Pressure	kPa	100	200	100
Rate of Strain	mm/min	0.1418	0.0011	0.1139
Max Deviator Stress				
Axial Strain		6.713	6.704	7.398
Axial Stress	kPa	597.215	807.04	1037.60
Cor. Deviator stress	kPa	586.438	795.27	1025.55
Effective Major Stress	kPa	772.438	1063.27	1375.55
Effective Minor Stress	kPa	187.000	268.00	350.00
Effective Stress Ratio		4.131	3.967	3.93
S'	kPa	479.719	665.63	862.77
t'	kPa	292.719	397.63	512.77
Max Effective Priciple	Stress R	atio		
Axial Strain		5.612	6.404	6.359
Axial Stress	kPa	586.489	804.753	1032.722
Cor. Deviator stress	kPa	574.937	793.039	1020.835
Effective Major Stress	kPa	757.937	1060.039	1368.835
Effective Minor Stress	kPa	183.000	267.000	348.000
Effective Stress Ratio		4.142	3.970	3.933
S'	kPa	470.469	663.520	858.418
t'	kPa	287.469	396.520	510.418
Shear Resistance Angle	degs			35.6
Cohesion c'	kPa			15

02/02/17 Date

> Client Ref P16185 Contract No

Galway GCT




BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

Shearing Stage

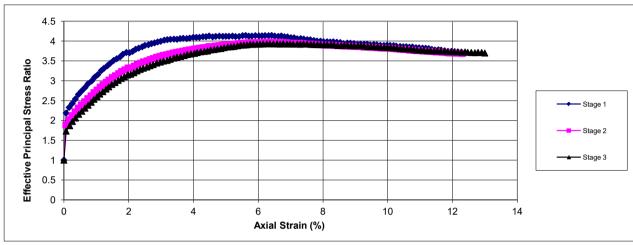
DP Glovs Checked and Approved By

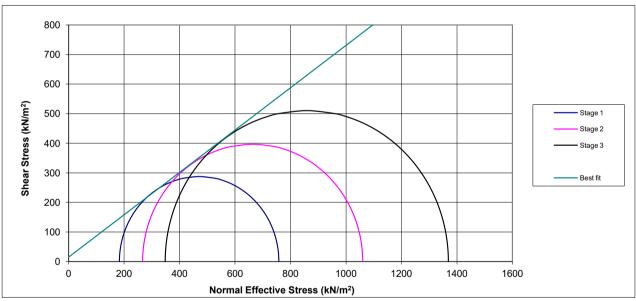
02/02/17 Date

Client Ref P16185

Galway GCT

Contract No




BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

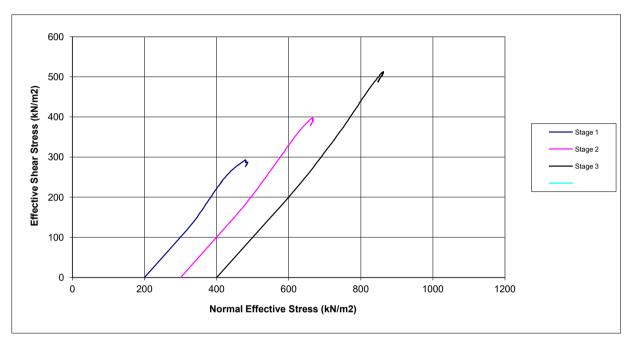
Shearing Stage

SP Groves

Checked and Approved By

02/02/17 Date

> Client Ref P16185 Contract No



BS 1377: Part 8: 1990: 38mm Set of Three

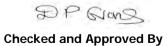
Specimen Details

Borehole		TP03-50
Sample No.		1
Depth	from(m)	0.50
Depth Depth	to(m)	1.00

Shearing Stage

02/02/17 Date

Client Ref P16185 Contract No 33812


BS 1377: Part 8: 1990: 38mm Set of Three

Specimen Details

	TP03-50
	1
from(m)	0.50
to(m)	1.00
	from(m) to(m)

02/02/17 Date

Client Ref

P16185 **Galway GCT Contract No** 33812

Priori Projec	•	N6 GC				c u		Direction (U =	A - Axial, I - Irregu unknown or rand	dom)				Diametral		Axial	_	Block/irregula	l Test Results Irlump
Projec		P1618						Per - perpendice Dimensions	planes of weakn ular to planes of between platens	weakness	ion)			↓ F			·	_	P
Carried	out by				06/	GH 01/2017		Dps' - at failure Lne - Length fro W - Width of s	om platens to nea chortest dimension m Area, cm ²	arest free end	,		D _{ps}	↓ L _{ne}	M D	os W	-	W	D
Borehole	Sample Top, m BGL	Sample Ref	Sample Type	Sample Base, m BGL	Specimen Ref	Specimen Depth, m BGL	Description	see I	Type ISRM and 8 Direction (Par/Per/U)	Failure Valid (Y/N)	L mm	Dimensions	W mm	Gauge reading, kN	P Failure Load, kN	De equivalent diameter, mm	Is MPa	Is(50) point load index, MPa	Remarks
RC03-60	1.6						Limestone	D	Par	Υ	80	86		10.21	10.21	86.0	1.38	1.76	Undulating Rough
RC03-60	2.7						Limestone	D	Par	Υ	76	86	86	9.44	9.44	86.0	1.28	1.63	Undulating Rough
RC03-60	6.9						Limestone	D	Par	Υ	101	86	86	19.95	19.95	86.0	2.70	3.44	Undulating Rough
RC03-60	7.8						Limestone	D	Par	Υ	160	86	86	29.13	29.13	86.0	3.94	5.03	Undulating Smooth
RC03-60	12						Limestone	D	Par	Υ	110	86	86	22.24	22.24	86.0	3.01	3.84	Undulating Rough
RC03-60	15.3						Limestone	D	Par	Υ	82	86	86	16.12	16.12	86.0	2.18	2.78	Undulating Rough
RC03-61	5.0						Limestone	I	Par	Υ	95	60	78	16.6	16.60	77.2	2.79	3.39	Undulating Rough
RC03-61	9.1						Limestone	D	Par	Υ	68	86	86	27.93	27.93	86.0	3.78	4.82	Undulating Rough
RC03-61	11.3						Limestone	D	Par	Υ	89	86	86	28.33	28.33	86.0	3.83	4.89	Undulating Rough
RC03-61	13.9						Limestone	D	Par	Y	126	86	86	23.96	23.96	86.0	3.24	4.14	Undulating Rough

N6 GCTP Phase 3 Job Name Job Number P16185

RC03-60 Borehole: Depth: 3.5 m

Rock Type Limestone

2.69 Mg/m³ **Bulk Density** Load at Failure, P 147.9 kN

Stress at Failure 25.41 MPa

Operator	GH
Checked	CK

N6 GCTP Phase 3 Job Name Job Number P16185

Borehole: RC03-60 Depth: 4.3 m

Rock Type Limestone

2.69 Mg/m³ **Bulk Density** Load at Failure, P 455.6 kN

Stress at Failure 78.41 MPa

Operator	GH
Checked	CK

Job Name
Job Number

N6 GCTP Phase 3
P16185

Borehole: RC03-61
Depth: 3.3 m

Rock Type Limestone

Bulk Density
Load at Failure, P

2.69 Mg/m³
292.8 kN

Stress at Failure 50.41 MPa

Operator	GH
Checked	CK

N6 GCTP Phase 3 Job Name Job Number P16185

Borehole: RC03-61 Depth: 6.3 m

Rock Type Limestone

2.69 Mg/m³ **Bulk Density** Load at Failure, P 455 kN

Stress at Failure 78.36 MPa

Operator	GH
Checked	CK

N6 GCTP Phase 3 Job Name Job Number P16185

Borehole: RC03-60

Depth: 9.6 m

Rock Type Limestone

2.68 Mg/m³ **Bulk Density** Load at Failure, P 208.1 kN

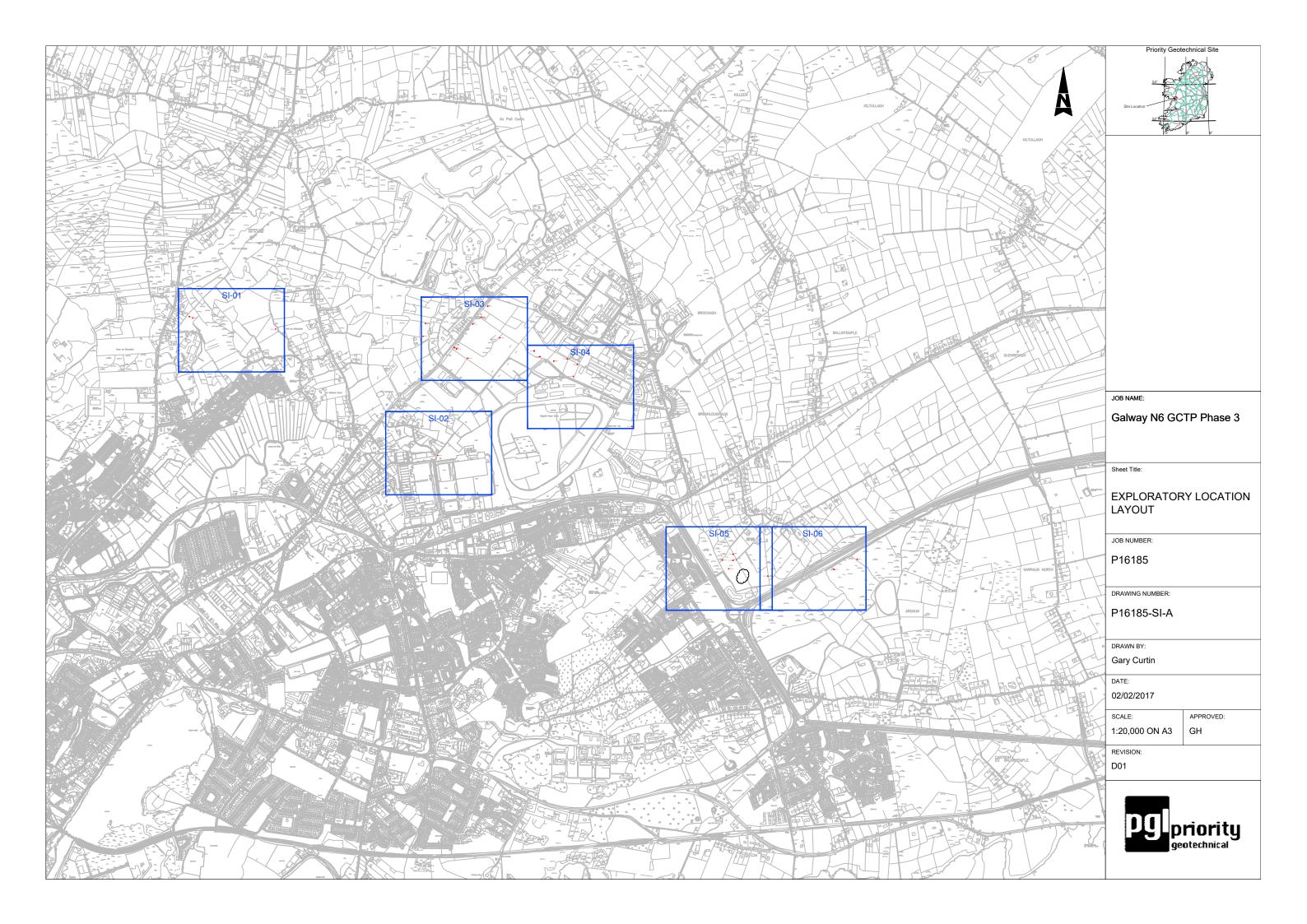
Stress at Failure 35.1 MPa

Operator	GH
Checked	CK

N6 GCTP Phase 3 Job Name Job Number P16185

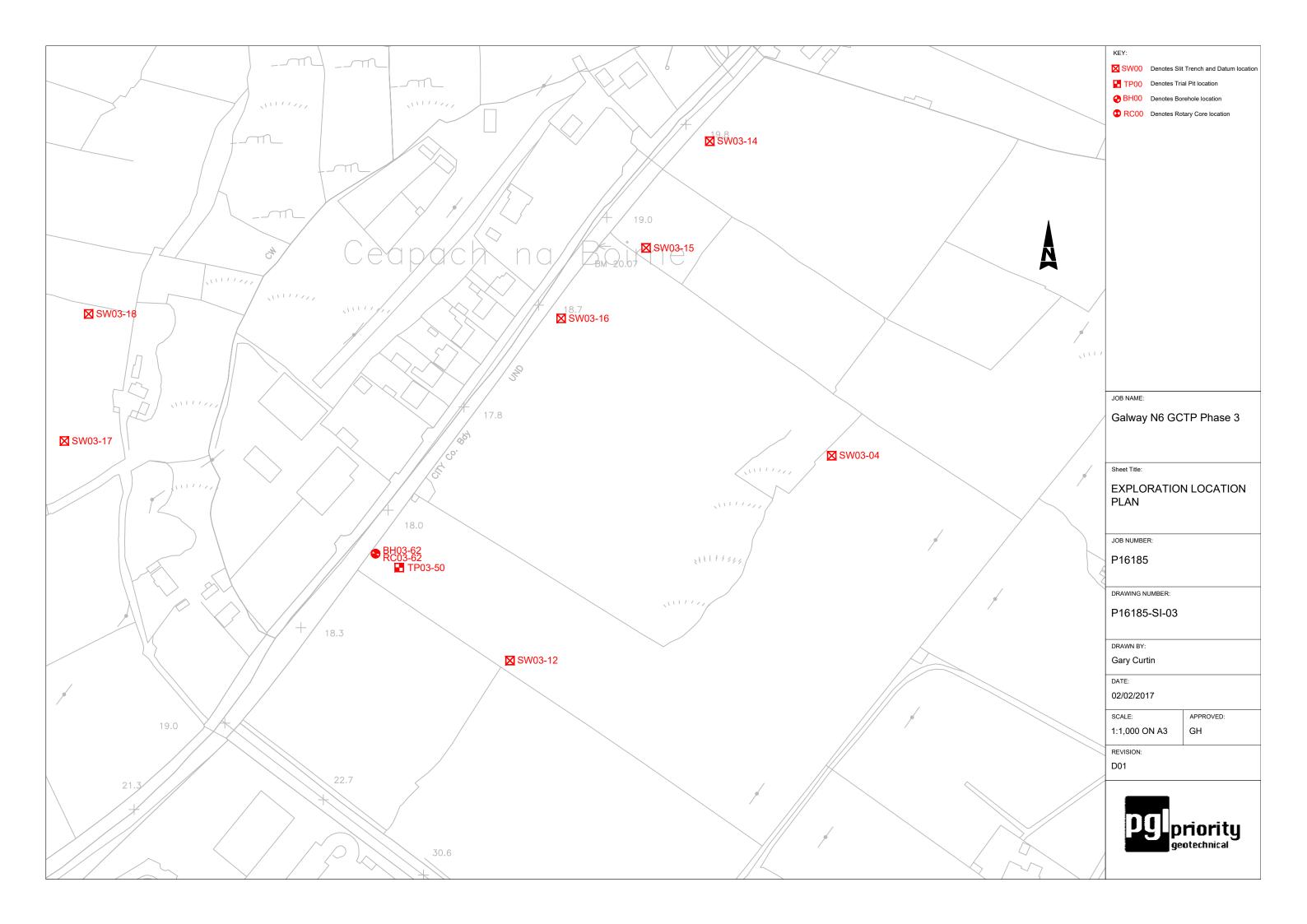
Borehole: RC03-61

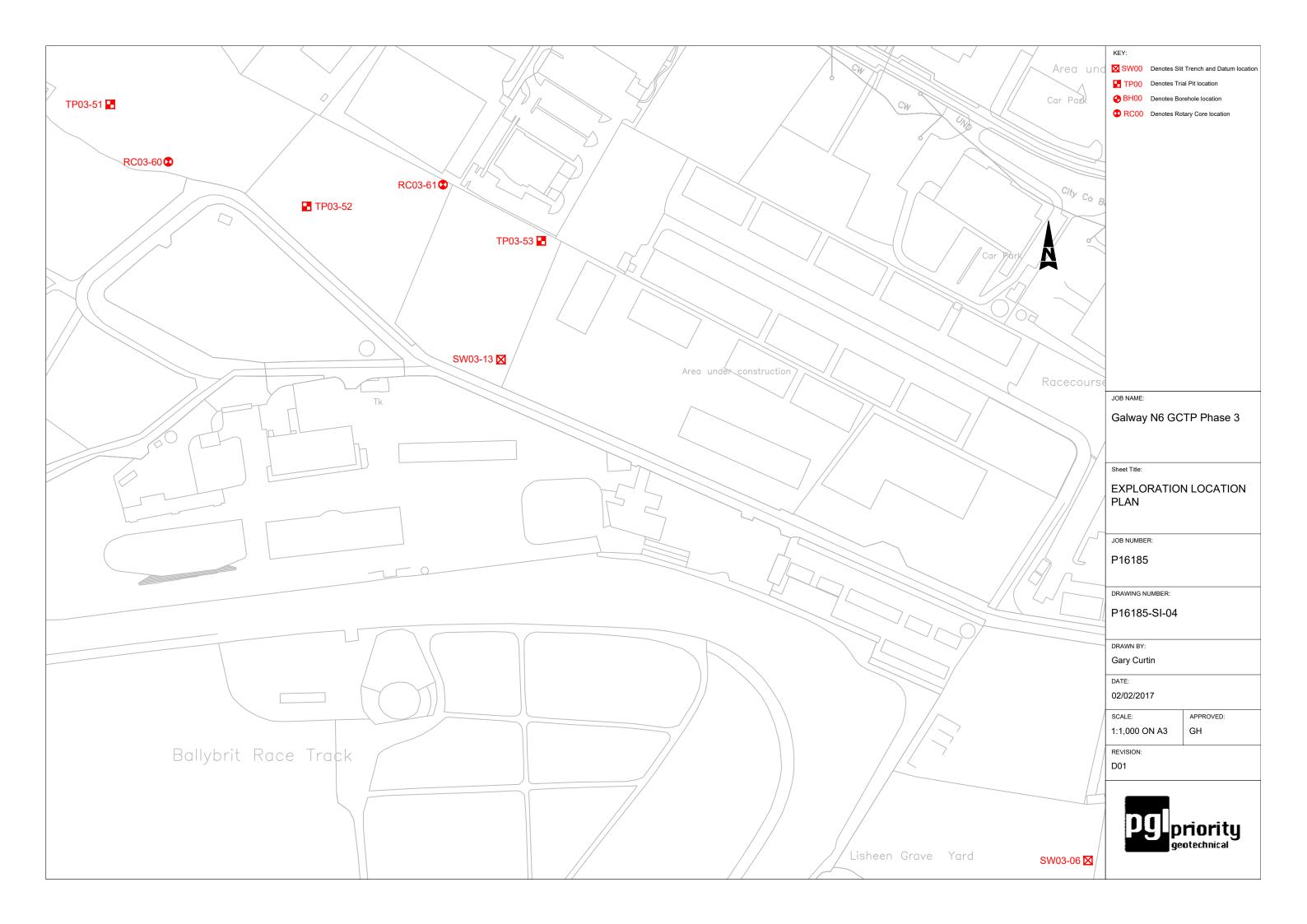
Depth: 13.25 m


Rock Type Limestone

2.70 Mg/m³ **Bulk Density** 560.4 kN Load at Failure, P

Stress at Failure 96.51 MPa




Operator	GH
Checked	CK

